+Advanced Search
  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The quasiperitecticcoated transformation has the dual characteristics of eutectic transformation and peritectic transformation, and it exists in many industrial alloys. However, a relatively complete theoretical model of peritectic solidification has not been established so far, and there are few related studies on its solidification mechanism. Based on this, this article carried out directional solidification experiments at different drawing speeds (v=1, 3, 5, 15, 30, 70 μm/s) for the Nb42Ti21Co37 quasiperitectic alloy, aiming to study the alloy"s performance at different drawing speeds. Microstructure evolution law, and build the corresponding solidification mechanism. The research results show that the conventional as-cast and directional solidification structures of Nb42Ti21Co37 quasiperitectic alloy contain α-Nb,Co6Nb7 and TiCo+Co6Nb7 quasiperitectic phases. With the gradual increase of the drawing rate, the primary α-Nb phase undergoes a spherical shape →petal-like →cluster-like →dendrite-like transformation; along with the above process, the quenched interface has undergone the transformation from cellular interface to cellular dendrite-like interface, and at the pulling rate v=70 μm/s, solid/liquid The interface disappears; secondly, the quasiperitectic structure in the steady-state growth zone of directional solidification is gradually refined, and the interlayer spacing has an exponential linear relationship with the growth rate, that is, λ=1+5×e2.5V;when the pulling rate is lower than 5μm/s the directional solidification process of the alloy is similar to equilibrium solidification; in addition, the growth mechanism of each phase in the stable growth zone is symbiotic growth. With the increase of the pulling rate, the directional arrangement of the quasiperitectic structure gradually deteriorates.

    Reference
    Li Shuangming(李双明), Fu Hengzhi(傅恒志).Acta Metallurgica Sinica [J]. 2013, 49: 1543-1548.
    Y. Ruan, Q.Q. Gu, P. Lü, et al. Materials and Design[J]. 2016,112: 239-245.
    Cao Yongqing(曹永青), Lin Xin(林鑫), WANG Zhitai(汪志太), et al. Foundry Technology[J]., 2016, 37: 2123-2128.
    W. Zhai, H. M. Liu, B. B. Wei. Materials Letters [J].2015, 141: 221-224.
    P. H.Wu, N.Liu, W.Yang,et al..Materials Science and Engineering A[J], 2015, 642: 142-149.
    R. Elena, D. Stefania, R. A. Javier, et al. Journal of Alloys and Compounds[J].2016, 685: 724-732.
    G,Guillemot Gandin,Charles-André.ActaMaterialia[J],2015,97: 419-434.
    KerrHW,KurzW .MetallurgicalReviews[J],1996,41(4):129?164.
    Sha G,K.A.Q O’Reilly,Cantor B,et al.Acta Materialia[J], 2003,51(7):1883?1897.
    L. Snugovsky,P. Snugovsky,D. D. Perovic,J. W. Rutter. Materials Science and Technology[J].2008, 24(2): 245-249.
    Li Li(李丽),Lu Xiaoyu(鲁晓宇),Cao Chongde(曹崇德),et al.Scientific Bulletin[J], 2009,054(014):2108?2112.
    Fan Long(范龙),Lu Xiaoyu(鲁晓宇),Dai Fuping(代富平).Casting[J]. 2010,059(008):775?779.
    Chen Zongmin(陈宗民). Journal of Shandong University of Technology (Natural Science Edition)[J]. 2001,15(003): 25?27.
    Xu H, Du Y, Tang C, et al. Materials Science Engineering A Structural Materials Properties Microstructure Processing[J]. 2005, A412(1/2):p.336-341.
    S.X. Huang, X.D. Zhang, Y. Jiang, et al. Materials and Design, 2017, 115: 170-178.
    Huang Haoran(黄浩然), YAN Erhu(闫二虎), MIN Ruonan(闵若男),et al.等.The Chinese Journal of Nonferrous Metals[J].2018, 28(10): 2058-2069.
    WANG Qi(王琪). Harbin: School of Materials Science and Engineering, Harbin Institute of Technology[D], 2019: 55-60.
    W. Kurz. Trans Tech Publication Switzerland[J]. 1998:71-92.
    Hu Hanqi(胡汉起). Principles of Metal Solidification[M]. 2007: 81-106.
    Jackson K A, Hunt J D.Trans Met Soc AIME [J]. 1966, 236: 1129?1142.
    Vandyoussefi M, Kerr H W, Kurz W. Acta Materialia [J].2000, 48(9): 2297?2306.
    Kurz W, Sahm P R.Berlin: Springer[M], 1975: 140?141.
    Boettinger W J. [J]. Metal Trans, 1974, 5(9): 2023?2031.
    Lee J H, Verhoeven J D. Crystal Growth[J].1994, 144(3?4): 353?366.
    Dobler S, Lo T S, Plapp M, et al. Acta Materialia[J].2004, 52(9): 2795?2808.
    FU Hengzhi(傅恒志),LUO Liangshun(骆良顺),SU Yanqing(苏彦庆), et al. The Chinese Journal of Nonferrous Metals[J].2007(03): 349-359.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Wang Jinhua,闫二虎,Di Chongbo, Chen Yuncan, Liu Wei, Wang Hao, Ge Xiaoyu, Cheng Jian, Huang Renjun, Sun Lixian. Evolution law of directional solidification structure of Nb42Ti21Co37 ternary quasiperitectic alloy[J]. Rare Metal Materials and Engineering,2021,50(10):3577~3584.]
DOI:10.12442/j. issn.1002-185X.20200786

Copy
Article Metrics
  • Abstract:725
  • PDF: 1391
  • HTML: 203
  • Cited by: 0
History
  • Received:October 12,2020
  • Revised:December 11,2020
  • Adopted:December 22,2020
  • Online: October 28,2021
  • Published: October 25,2021