摘要
尖晶石型LiMn2O4易发生Jahn-Teller畸变和Mn溶解,容量衰减较快,限制了商业化应用。通过低温固相燃烧法快速合成了Al-Co共掺LiAl0.03CoxMn1.97-xO4(x≤0.08)正极材料。结果表明,Al-Co共掺降低了截断八面体{111}、{100}、{110}晶面的表面能位垒,增加了异质形核的形成,促进了截断八面体晶体的发育,减缓了Mn溶解和扩展了L
尖晶石型LiMn2O4因锰资源丰富、电压高和环境友好等优点已成为锂离子电池正极材料重要选角之
以上结果表明,不同合成方法、不同掺杂元素、单掺或复合掺杂及不同掺杂量,均对样品的电化学性能有较大影响;Al、Co单掺或复合掺杂均能明显抑制尖晶石型LiMn2O4的Jahn-Teller畸变,促进晶体发育和形成较完整的单晶截断八面体颗粒,减缓Mn溶解,提高材料的循环稳定性;虽然Al、Co单掺样品在不同倍率的首次放电比容量大多数略高于Al、Co复合掺杂样品,但其循环稳定性显著低于Al、Co复合样品;在高倍率下Al、Co复合掺杂样品虽然有较高的倍率容量和循环稳定性,但Al和Co共掺样品的倍率容量和保持率更高;Al、Co单掺或共掺的截断八面体样品,有最高的倍率容量和长循环容量保持率。从Al-Co共掺LiMn2O4材料的研究报道看,其研究主要涉及不同热处理温度、不同制备方法等对其晶体结构、电化学性能的影响,没有系统研究不同Al、Co掺杂量、不同高倍率对单晶形貌、晶体结构、电化学性能、动力学性能等的影响,也未见Al和Co共掺的截断八面体材料的研究报道。
本研究联合Al-Co元素掺杂和单晶形貌调控策略,通过固相燃烧法合成了截断八面体LiAl0.03CoxMn1.97-xO4 (x≤0.08)正极材料。在低Al掺杂量的基础下,调节掺杂元素Co,系统研究了Al-Co共掺对LiMn2O4晶体结构、颗粒形貌、倍率性能、循环寿命和动力学特性的影响,通过材料表征和性能测试可知,Al-Co双掺杂促进了尖晶石型锰酸锂中{111}、{100}和{110}晶面的生长。优化后的LiAl0.03Co0.03Mn1.94O4正极材料晶体发育较好,截断八面体晶面清晰,有效抑制了Jahn-Teller畸变,降低了Mn溶解,并具有优异的高倍率容量和长循环稳定性。
以MnCO3(AR, Aladdin)和Li2CO3(AR, Aladdin)为锰源和锂源,Al(NO3)3·9H2O(AR, Aladdin)和CoCO3(AR, Aladdin)为Al和Co掺杂剂,按原料总质量30 g计算,添加1.5 g柠檬酸为燃料,依据LiAl0.03CoxMn1.97-xO4(x=0、0.01、0.03、0.05和0.08)的化学计量比称取原料置于球磨罐中并加入适量乙醇,球磨10 h得均匀的泥浆状混合物,将其放入60 ℃的鼓风干燥箱中烘干得原料前驱体。称取5 g前驱体置于瓷坩埚中并将其移入升温到500 ℃的马弗炉中,在空气气氛下燃烧反应1 h得到燃烧产物。冷却、研磨后,称取1 g燃烧产物放入650 ℃的马弗炉中焙烧6 h,得到LiAl0.03Mn1.97O4和LiAl0.03CoxMn1.97-xO4样品,将LiAl0.03Mn1.97O4标记为LAMO及LiAl0.03CoxMn1.97-xO4 (x=0.01,0.03,0.05和0.08)标记为LACMO-x(x=0.01、0.03、0.05和0.08)。
用X射线衍射仪(XRD,D8 ADVANCE,Bruker,德国)在40 kV、40 mA的管电压和管电流、10°~80°扫描角度和12°/min的扫描速度下,以Cu-Kα为辐射源来分析材料的物相和晶体结构。通过扫描电子显微镜(SEM,NOVA NANOSEM 450,FEI,美国)和透射电子显微镜(TEM,JEM-2100,JEOL,日本)观察样品颗粒形貌。采用X射线光电子能谱(XPS,K-alph
称取质量比为8:1:1的正极材料、乙炔炭黑和聚偏氟乙烯(PVDF)于玛瑙球磨罐中,加入适量NMP(N-甲基-2-吡咯烷酮)作为溶剂并均匀混合,将所得混合浆料均匀涂布在光滑的铝箔片上,在80 ℃鼓风干燥箱中烘干后切片。以正极圆片为正极、1 mol/L的LiPF6(VEC:VDMC:VEMC=1:1:1)为电解液、金属锂片为负极,在充满Ar气的手套箱(Super1220/750,米开罗那机电技术有限公司)内组装成扣式电池,室温下静置12 h后,进行电性能测试。
用蓝电测试系统(武汉金诺有限公司,CT3002A型)在0.5~20 C的充放电倍率、3.0~4.5 V的电压范围和25或55 ℃温度下进行恒电流充放电性能测试;用电化学工作站(上海辰华仪有限公司,CH1604D型)在3.6~4.5 V的电压范围和1~1

图1 LAMO和LACMO-x归一化后的XRD图谱和(400)衍射峰 放大图
Fig.1 Normalized XRD patterns (a) of LAMO and LACMO-x, and enlargement of (400) diffraction peaks (b)

图2 LAMO和LACMO-x样品SEM照片及其粒径统计分布图和截断八面体模型
Fig.2 SEM images (a–e) and particle size distributions (a1–e1) of LAMO (a, a1) and LACMO-x with x=0.01 (b, b1), x=0.03 (c, c1), x=0.05 (d, d1), x=0.08 (e, e1); truncated octahedral model (f)
为进一步研究LACMO-0.03样品的微观形貌,对其进行了透射电镜、高分辨透射电镜(HRTEM)和选区电子衍射(SAED)分析,如

图3 LACMO-0.03的TEM、HRTEM照片和SAED花样
Fig.3 TEM images (a–b), HRTEM images (b1–b3) and SAED pattern (c) of LACMO-0.03
通过XPS分析LACMO-0.03样品表面元素组成和价态,见

图4 LACMO-0.03的XPS图谱
Fig.4 XPS spectrum of LACMO-0.03: (a) survey spectrum (illustrations are high-resolution spectra of Al 2p and Co 2p) and (b) fitting spectra of Mn 2p3/2

图5 LAMO和LACMO-0.03在0.5 C下第1次、第5次和第10次的充放电曲线;LAMO和LACMO-x的倍率性能图和循环性能图;LAMO和LACMO-0.03在20 C的循环性能图
Fig.5 Charge-discharge curves of the 1st, 5th, and 10th cycles at 0.5 C for LAMO and LACMO-0.03 (a); rate performance diagram (b) and cycle performance diagrams at 1 C (c), 5 C (d) and 10 C (e) for LAMO and LACMO-x, cycle performance diagram of LAMO and LACMO-0.03 at 20 C (f)
Doping element | Doping content | Method | Current density/C | First discharge capacity/mAh· | Cycle number | Capacity retention ratio/% | Ref. |
---|---|---|---|---|---|---|---|
Al, Co | LiAl0.03Co0.03Mn1.94O4 | Solid state combustion | 5 | 108.6 | 2000 | 70.4 | This work |
10 | 104.9 | 2000 | 75.5 | ||||
20 | 70.2 | 500 | 90.7 | ||||
Al, Co | LiAl0.08Co0.05Mn1.87O4 | Solid state combustion | 5 | 109.3 | 1000 | 76.0 |
[ |
10 | 100.6 | 1000 | 79.3 | ||||
Al, Co | LiAl0.056Co0.017Mn1.927O4 | Solid state | 5 | 105.4 | 350 | 82.9 |
[ |
10 | 98.6 | 350 | 75.1 | ||||
Li, Al, Co | Li1.088Al0.037Co0.028Mn1.847O4 | Hydrothermal | 8 | 78.6 | 100 | 95.5 |
[ |
Co, Ni | LiCo0.025Ni0.025Mn1.95O4 | Sol-gel | 1 | 115.5 | 200 | 97 |
[ |
Al, Ni | LiAl0.10Ni0.03Mn1.87O4 | Solid state combustion | 10 | 100.2 | 1000 | 82.4 |
[ |
15 | 96.1 | 1000 | 79.5 | ||||
20 | 92.9 | 1000 | 74.4 | ||||
Al, Cr | LiAl0.01Cr0.04Mn1.95O4 | Solid state combustion | 5 | 106.1 | 2000 | 55.1 |
[ |
10 | 103.0 | 2000 | 67.0 | ||||
15 | 97.2 | 1000 | 72.5 | ||||
20 | 82.0 | 1000 | 69.0 | ||||
Al, Zn | LiAl0.01Zn0.08Mn1.91O4 | Solid state combustion | 5 | 92.6 | 2000 | 70.4 |
[ |
10 | 76.5 | 2000 | 74.8 | ||||
15 | 64.2 | 800 | 82.2 |

图6 LAMO和LACMO-0.03在55 ℃下循环性能图
Fig.6 Cycle performance diagrams of LAMO and LACMO-0.03 at 55 ℃: (a) 1 C and (b) 5 C
综上所述,LACMO-0.03样品具有最优的电化学性能。这主要归因于以下两点:第一,Al-Co共掺取代了MnO6八面体中部分高自旋M
图

图7 LAMO和LACMO-x循环前电化学交流阻抗曲线(插图为实部阻抗Z'与其角频率
Fig.7 EIS curves of LAMO and LACMO-x at 10 C: (a) before cycle (illustration shows fitting relationship of real impedance Z' with
为了进一步探究电极材料动力学性能,分别测试了LAMO和LACMO-0.03样品在不同温度下的交流阻抗,并结合下列公式计算其表观活化
(1) |
(2) |
式中,A是与温度无关的常数,R=8.314 J/mol·K,T为绝对温度,n是转移电子数,F=96484.5 C/mol。联立上述两式得:lgi0=lgA-1000Ea /(RTln10),以lgi0与1000/T作图,见图

图8 LAMO和LACMO-0.03在不同温度下的EIS曲线(插图为相应的lgi0与1000/T拟合曲线)
Fig.8 EIS curves of LAMO (a) and LACMO-0.03 (b) at different temperatures (illustrations are the Arrhenius plots of lgi0 vs. 1000/T)

图9 LAMO和LACMO-0.03循环前和10 C倍率下循环2000次后的循环伏安曲线
Fig.9 CV curves of LAMO and LACMO-0.03 at 10 C before (a) and after (b) 2000 cycles
为了研究所制样品的结构稳定性,对两电极做了 10 C 下2000次循环前、后的XRD表征测试,见

图10 LAMO和LACMO-0.03循环前后的XRD图谱
Fig.10 XRD patterns of LAMO and LACMO-0.03 before and after cycle
1)通过低温固相燃烧法快速合成了LiAl0.03CoxMn1.97-xO4 (LACMO-x, x=0、0.01、0.03、0.05和0.08)正极材料。结果表明,Al-Co共掺降低了截断八面体{111}、{100}、{110}晶面的表面能位垒,增加了异质形核的形成,促进了截断八面体晶体的发育,形成了完整的单晶截断八面体形貌,高暴露{111}晶面减缓了Mn溶解,截断{100}和{110}晶面扩展了L
2)优化的LACMO-0.03材料在5 C和10 C下初次放电比容量分别为108.6和104.9 mAh/g,2000次循环后保持率高达70.4%和75.5%;在更高倍率20 C下,500次循环后放电比容量仍有初始容量(70.2 mAh/g)的90.7%;在55 ℃、5 C下,LACMO-0.03首次放电比容量为 113.3 mAh/g,循环500次后保持率为54.5%,均显著 高于LiAl0.03Mn1.97O4的放电比容量(97.2 mAh/g)和保持率(39.3%)。
3)LACMO-0.03具有较小的电荷转移阻抗
(62.3 Ω)、较低的活化能(22.84 kJ/mol)和较大的锂离子扩散系数(5.47×1
参考文献 References
Ji Ying, Wang Nian, Guo Yujiao et al. Journal of Alloys and Compounds[J], 2023, 949: 169833 [百度学术]
Hu Wei, Luo Wenwei, Wu Musheng et al. Chinese Physics B[J], 2022, 31(9): 642 [百度学术]
Li Bingchen, Wang Mei, Zhang Yuanxia et al. Electrochimica Acta[J], 2023, 464: 142898 [百度学术]
Tao Yang(陶 扬), Li Yan(李 燕), Guo Junming(郭俊明) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(9): 3248 [百度学术]
Xie Taoxiong, Ren Pengwen, Yu Linyu et al. Chinese Journal of Structural Chemistry[J], 2022, 41(2): 2202168 [百度学术]
Li Pengwei, Luo Shaohua, Wang Yikai et al. Energy & Fuels[J], 2022, 36(16): 9329 [百度学术]
Fang Daolai, Li Junchao, Liu Xin et al. Journal of Alloys and Compounds[J], 2015, 640: 82 [百度学术]
Tao Yang, Lu Yao, Guo Yujiao et al. Journal of Alloys and Compounds[J], 2022, 904: 164027 [百度学术]
Hao Jiabin, Gao Hongcheng, Guo Junming et al. International Journal of Electrochemical Science[J], 2022, 17(12): 221288 [百度学术]
Zhang Zhifeng, Chen Zhenlian, Wang Guangjin et al. Physical Chemistry Chemical Physics[J], 2016, 18(9): 6893 [百度学术]
Xu Chunrui, Li Yunjiao, Xu Hu et al. International Journal of Electrochemical Science[J], 2017, 12(6): 5185 [百度学术]
Ji Ying(吉 颖), Li Meng(李 萌), Guo Yujiao(郭昱娇) et al. Transactions of Materials and Heat Treatment(材料热处理学 报)[J], 2023, 44(3): 28 [百度学术]
He Jiayi, Zhuang Shuxin, Wang Zhiheng et al. Journal of Alloys and Compounds[J], 2023, 943: 169162 [百度学术]
Fu Yao, Jiang Hao, Hu Yanjie et al. Industrial & Engineering Chemistry Research[J], 2015, 54(15): 3800 [百度学术]
Xu Wangqiong, Guo Shimei, Li Qiling et al. Vacuum[J], 2024, 219: 112724 [百度学术]
Yang Mei, Liang Qimei, Guo Yujiao et al. Journal of Energy Storage[J], 2023, 72: 108528 [百度学术]
Hou Peiyu, Tian Yuhang, Lin Zezhou et al. Inorganic Chemistry Frontiers[J], 2023, 10(18): 5452 [百度学术]
Li Yan(李 燕), Zhang Junjie(张俊杰), Guo Junming(郭俊明). Materials Reports(材料导报)[J], 2023, 37(14): 20 [百度学术]
Park H, Guo Z Z, Manthiram A. Small[J], 2023, 20(6): 2303526 [百度学术]
Wang Dahui, Gan Xianhao, Chen Huaijing et al. Rare Metal Materials and Engineering[J], 2022, 51(2): 442 [百度学术]
Alburquenque D, Vargas J, Tasca F et al. Journal of Alloys and Compounds[J], 2024, 971: 172603 [百度学术]
Wang Nian(王 念), Li Meng(李 萌), Ji Ying(吉 颖) et al. Chinese Journal of Inorganic Chemistry(无机化学学报)[J], 2023, 39(6): 1042 [百度学术]
Liao Hengyi, Zhao Siwei, Cai Mingzhi et al. Advanced Energy Materials[J], 2023, 13: 2300596 [百度学术]
Shi Renji, Zhou Tong, Zhou Yu et al. Solid State Ionics[J], 2024, 404: 116434 [百度学术]
Chen Yifei(陈奕妃), Yang Mei(杨 梅), Xiang Mingwu(向明武) et al. Journal of Materials and Metallurgy(材料与冶金学报)[J], 2023, 22(6): 573 [百度学术]
Hou Peiyu, Lin Zezhou, Li Feng et al. Small[J], 2023, 19(48): 2304482 [百度学术]
Li Yang(李 杨), Li Jin(李 进), Xi Wen(席 文) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(8): 3070 [百度学术]
Lu Zhigang(芦志刚), Li Yanwei(李延伟), Jiang Jiqiong(姜吉琼) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(10): 3757 [百度学术]
Margarette S J, Bangeppagari M, Vijaya B K et al. Ceramics International[J], 2024, 50(3): 4955 [百度学术]
Guo Yujiao(郭昱娇), Lu Yao(卢 瑶), Ning Ping(宁 平) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(12): 4525 [百度学术]