摘要
GH4141镍基高温合金是制作涡轮盘、紧固件和发动机机匣的关键材料,通常采用传统铸-锻/轧工艺生产制备。本研究以热轧开坯态GH4141合金的热加工行为为研究对象,通过Gleeble热压缩实验,研究了热轧态GH4141合金在变形温度为1050~1150 ℃和应变速率为0.01~1.0
关键词
变形高温合金因其优异的高温性能与组织稳定性,在航空发动机、工业燃气轮机领域具有广泛应
高温合金铸锭一般采用锻造开坯或轧制、挤压开
本研究采用的GH4141变形高温合金,是经双联冶炼,真空感应冶炼(vacuum induction melting, VIM)+电渣重熔(electroslag remelting, ESR)制备的铸锭(Φ250 mm),主要化学成分见
Cr | Co | Mo | Al | Ti | B | C | Ni |
---|---|---|---|---|---|---|---|
19.58 | 11.35 | 10.40 | 1.40 | 3.10 | 0.007 | 0.09 | Bal. |

图1 GH4141高温合金平衡相图和局部放大图
Fig.1 Equilibrium phase diagram for GH4141 superalloy (a) and partially enlarged diagram of the circled region in Fig.1a (b)
为研究热轧GH4141合金热变形行为,构建热变形本构模型与动态再结晶模型,自GH4141合金热轧板 1/4~3/4半径区域切取Φ8 mm×12 mm的圆柱试样,在Gleeble 1500D热模拟试验机以10 ℃/s的速率升温至目标温度后保温180 s后进行热压缩实验,热压缩温度为1050、1100和1150 ℃,应变速率为0.01、0.1和1.0

图2 GH4141高温合金热变形工艺和取样示意图
Fig.2 Schematic diagram of the hot deformation process (a) and sampling process (b) for GH4141 superalloy
对于光学(OM)和扫描电镜(SEM)组织表征,先使用砂纸进行机械打磨(从240#开始至2000#结束),接着在抛光机上分别用3和1 μm的金刚石悬浮液对试样进行机械抛光处理。为显示晶界,使用(3 g CuSO4+40 mL HCl+3 mL H2SO4)腐蚀剂浸没腐蚀,腐蚀时间30~40 s。腐蚀后的样品用无水乙醇进行冲洗,并在金相显微镜(型号CX40M)和扫描电镜(型号MIRA 3 XMH)下进行微观组织观察。动态再结晶分数采用ImageJ软件进行测量,统计每个样品中心3个区域的动态再结晶分数,并取平均值。
轧制开坯采用如下方式进行:沿铸锭半径切割出半径为125 mm,厚度为40 mm,角度为4

图3 GH4141高温合金锻态和热轧态光学显微组织, 锻态与热轧态热变形真应力-真应变曲线
Fig.3 OM images of the forged (a) and hot rolled (b) GH4141 superalloy as well as true stress-true strain curves of forged and hot rolled GH4141 superalloy during the hot deformation (c)
不同热变形条件下,试样热压缩过程获得的真应力-真应变曲线如

图4 GH4141高温合金热变形过程的真应力-真应变曲线
Fig.4 True stress-true strain curves of GH4141 superalloy during hot deformation: (a) 1050 ℃, (b) 1100 ℃, and (c) 1150 ℃
Temperature | Strain rate/ | Peak stress/MPa |
---|---|---|
1050 | 0.01 | 187.7 |
1100 | 134.4 | |
1150 | 95.9 | |
1050 | 0.1 | 293.3 |
1100 | 219.7 | |
1150 | 154.4 | |
1050 | 1.0 | 387.8 |
1100 | 301.4 | |
1150 | 221.4 |
变形的过程中,流变应力受到应变速率和变形温度的影响,可使用Arrhenius本构模型建立GH4141合金热变形过程中的本构模
(1) |
(2) |
all values | (3) |
式中,为应变速率,为峰值应力,为热变形激活能,为热变形温度,为气体常数,而、、、、、和均为材料参数。同时,引入Zener-Hollomon参数求解相关材料参数,其表达式为
(4) |
对
(5) |
利用
(6) |
(7) |
利用

图5 应变速率、变形温度、Z参数与峰值应力的拟合关系曲线
Fig.5 Fitting relationship curves of strain rate, deformation temperature, Z parameter and peak stress: (a) -, (b) -, (c) -, (d) -, and (e) -
将计算得到的代入到
接着对
(8) |
计算的结果为,根据上文计算得到的值,结合气体常数便可以计算得到热变形激活能。绘制-的散点图并进行线性回归拟合得到拟合直线,即可获得热变形激活能。
然后,对
(9) |
通过绘制-的散点图并且进行线性回归处理,拟合所得直线的截距为。
综上,得到热轧态GH4141合金在热变形过程中的本构方程为:
(10) |
(11) |
热轧态GH4141合金在不同热变形条件下的光学显微组织与动态再结晶分数如

图6 应变速率为0.01
Fig.6 OM images and recrystallization fraction of hot rolled GH4141 superalloy after hot deformation with a strain rate of 0.01

图7 应变速率为0.1
Fig.7 OM images and recrystallization fraction of GH4141 superalloy after hot deformation with a strain rate of 0.1

图8 应变速率为1.0
Fig.8 OM images and recrystallization fraction of GH4141 superalloy after hot deformation with a strain rate of 1.0
由

图9 真应变为0.1时GH4141合金组织SEM照片及孪晶界局部放大图
Fig.9 SEM images of the GH4141 superalloy and partially enlarged images in twin boundary region after forging at a constant true strain of 0.1: (a) 1050 ℃, 0.01
过去研究发

图10 GH4141合金在变形温度1050 ℃、应变速率0.01
Fig.10 OM (a–c) and (d–f) SEM images of GH4141 superalloy after hot deformation at 1050 ℃ and strain rate of 0.01
热变形过程中晶粒细化是依靠动态再结晶实现的,动态再结晶的完成程度(动态再结晶体积分数)直接影响材料的组织与性能。动态再结晶体积分数模型可以使用Johnson-Mehl-Avrami-Kolmogorov(JMAK)方程进行构建,JMAK方程如下所
(12) |
(13) |
其中,为动态再结晶分数,为发生动态再结晶的临界应变量,为动态再结晶分数达到50%时所对应的应变量,为初始晶粒尺寸,为应变速率,为动态再结晶激活能,为气体常数,为热变形温度,其他为与材料相关的参数。
过去研究表
(14) |
由于热变形实验中初始试样相同均为热轧态GH4141合金,故初始晶粒尺寸相同,即项可视作常数项,即
(15) |
依据上述研究定量统计的热变形过程动态再结晶分数变化,绘制了动态再结晶分数变化曲线,如

图11 实验测得GH4141合金动态再结晶分数随真应变变化
Fig.11 Experimentally measured changes in dynamic recrystallization fraction of GH4141 superalloy against true strain with different strain rates: (a) 0.01
Temperature | Strain rate/ | |
---|---|---|
1050 | 0.01 | 0.46 |
1100 | 0.29 | |
1150 | 0.16 | |
1050 | 0.1 | 0.54 |
1100 | 0.42 | |
1150 | 0.19 | |
1050 | 1.0 | 0.80 |
1100 | 0.53 | |
1150 | 0.25 |
其次,对
(16) |
绘制–散点图,对散点进行线性回归处理得到归一化直线方程,直线的斜率即为,进而获得。散点图及拟合直线如

图12 变形温度、应变速率与的拟合关系曲线
Fig.12 Fitting relationship curves between deformation temperature as well as strain rate and (a) - and (b)
其次,通过–散点图线性拟合得到直线,该直线的斜率即为材料参数,如
综上可以得到
(17) |
对
(18) |
同时通过绘制的-散点图和线性拟合,所拟合直线的斜率为,截距为,如图13所示。拟合直线的
(19) |
为验证动态再结晶模型的准确性,热轧态GH4141合金在1000 ℃下,经不同变形量和应变速率热变形后的光学显微组织如

图14 1000 ℃时热轧GH4141合金热变形后OM照片
Fig.14 Optical images and recrystallization fraction of hot rolled GH4141 superalloy after hot deformation at 1000 ℃
Strain rate/ | ε | Temperature/℃ | Predicted result/% | Experimental result/% | Relative error/% |
---|---|---|---|---|---|
0.1 | 0.4 | 1000 | 20.0 | 17.4 | 2.6 |
0.1 | 0.7 | 1000 | 38.2 | 42.6 | 4.4 |
0.01 | 0.7 | 1000 | 50.0 | 53.4 | 3.4 |
1)热轧态GH4141合金热变形过程中,随着变形速率的加快和变形温度的降低,材料变形的流变抗力逐渐增大。基于热变形过程压缩曲线,并根据Arrhenius经验公式,可以构建出热变形过程的本构模型,其表达式为:
2)热轧态GH4141合金在热变形过程中,从动态再结晶完成程度角度,较优的热变形条件确定为:热变形温度1150 ℃,应变速率0.01~0.1
3) 通过实验,测得不同变形条件下的动态再结晶分数,并构建了热轧态GH4141合金在热变形过程中的动态再结晶分数模型,实现了热变形工艺参数对变形后组织中动态再结晶分数的定量预测:
参考文献 References
Guo Jianting(郭建亭). Materials Science and Engineering for Superalloys(高温合金材料学)[M]. Beijing: Science Press, 2008 [百度学术]
Jiang Huang, Xiang Xuemei, Dong Jianxin. Journal of Alloys and Compounds[J], 2022, 929: 167086 [百度学术]
Zhang Xianguang, Chen Jiajun, Zhou Yang et al. Journal of Iron and Steel Research International[J], 2023, 30(8): 1622 [百度学术]
Gan Hongyan(甘洪岩), Cheng Ming(程 明), Song Hongwu(宋鸿武) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(11): 3556 [百度学术]
Ding Yutian(丁雨田), Wang Tao(王 涛), Wang Xingmao(王兴茂) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(7): 2549 [百度学术]
Kong Weijun(孔维俊), Ding Yutian(丁雨田), Wang Xingmao(王兴茂) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(8): 2859 [百度学术]
Yu Huichen(于慧臣), Xie Shishu(谢世殊), Zhao Guangpu(赵光普) et al. Journal of Materials Engineering(材料工程)[J], 2003 (9): 3 [百度学术]
Zhang Beijiang(张北江), Huang Shuo(黄 烁), Zhang Wenyun(张文云) et al. Acta Metallurgica Sinica(金属学报)[J], 2019, 55(9): 1095 [百度学术]
Du Jinhui(杜金辉), Zhao Guangpu(赵光普), Deng Qun(邓 群) et al. Journal of Aeronautical Materials(航空材料学报)[J], 2016, 36(3): 27 [百度学术]
Zhang Rui(张 瑞), Liu Peng(刘 鹏), Cui Chuanyong(崔传勇) et al. Acta Metallurgica Sinica(金属学报)[J], 2021, 57(10): 1215 [百度学术]
Jiang He(江 河), Dong Jianxin(董建新), Zhang Maicang(张麦仓) et al. Aeronautical Manufacturing Technology(航空制造技术)[J], 2021, 64(Z1): 62 [百度学术]
Chen Yue(陈 悦), Wang Yu(王 珏), Wang Ying(王 莹) et al. Modern Metallurgy(现代冶金)[J], 2015, 43(6): 1 [百度学术]
Qu Jinglong(曲敬龙), Du Jinhui(杜金辉), Deng Qun(邓 群) et al. Journal of Materials Engineering(材料工程)[J], 2006(S1): 139 [百度学术]
Jiang Hong(江 鸿), Hang Yan(杭 燕), Huang Bo(黄 波) et al. Journal of Plasticity Engineering(塑性工程学报)[J], 2020, 27(8): 128 [百度学术]
Xiao Dongping(肖东平), Fu Jianhui(付建辉), Chen Qi(陈 琦) et al. Journal of Plasticity Engineering(塑性工程学报)[J], 2022, 29(9): 157 [百度学术]
Pan Q L, Li B, Wang Y et al. Materials Science and Engineering A[J], 2013, 585: 371 [百度学术]
Liu Zhiling(刘志凌), Ren Shuai(任 帅), Liu Wei(刘 伟) et al. The Chinses Journal of Nonferrous Metals(中国有色金属学报)[J], 2023, 33(8): 2577 [百度学术]
Liu Hongliang, Zhang Maicang, Xu Min et al. Materials Science and Engineering A[J], 2021, 800: 14280 [百度学术]
Zhang Xianguang(张献光), Chen Jiajun(陈佳俊), Yang Wenchao(杨文超) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2024, 53(1): 136 [百度学术]
Lv Shaomin, Jia Chonglin, He Xinbo et al. Advanced Engineering Materials[J], 2020, 22(12): 2000622 [百度学术]
Matsui T. Materials Transactions[J], 2013, 54(4): 512 [百度学术]
Ji Hongchao, Duan Hailong, Li Yaogang et al. Journal of Materials Research and Technology[J], 2020, 9(4): 7210 [百度学术]
Medina S F, Hernandez C A. Acta Materialia[J], 1996, 44(1): 137 [百度学术]
Wan Zhipeng, Hu Lianxi, Sun Yu et al. Vacuum[J], 2018, 155: 585 [百度学术]
Jia Lei, Cui Heng, Yang Shufeng et al. Journal of Materials Research and Technology[J], 2023, 26: 6652 [百度学术]
Godasu A K, Prakash U, Mula S. Journal of Alloys and Compounds[J], 2020, 844: 156200 [百度学术]
Ouyang Lingxiao, Luo Rui, Gui Yunwei et al. Materials Science and Engineering A[J], 2020, 788: 139638 [百度学术]
Sommitsch C, Mitter W. Acta Materialia[J], 2006, 54(2): 357 [百度学术]
Medina S F, Hernandez C A. Acta Materialia[J], 1996, 44(1): 165 [百度学术]
Jiang He, Dong Jianxin, Zhang Maicang et al. Materials Science and Engineering A[J], 2016, 649: 369 [百度学术]