Ti-25at%Nb 合金 β、α''和 ω 相结构稳定性 和弹性性质理论计算

姚 强,邢 辉,郭文渊,孙 坚

(上海交通大学,上海 200240)

摘 要:采用赝势平面波方法和广义梯度近似对 Ti-25at%Nb 合金中不同晶体结构 β 、a"和 ω 相的弹性常数、内聚能以 及电子结构进行了计算,并结合计算结果对 β 、a"和 ω 相的结构稳定性进行了讨论。计算结果表明, Ti-25at%Nb 合金 中 β 、a"和 ω 相均满足其结构弹性稳定性要求,其中 a"相的结构稳定性最高,而 β 相的结构稳定性最低;计算结果同 时表明, Ti-25at%Nb 合金中 ω 相具有最高弹性模量, β 相则具有最低弹性模量。

关键词: 钛合金; 结构稳定性; 弹性性质; 第一性原理

中图法分类号: TG 146.2⁺3 文献标识码: A

含过渡族元素 *B* 型钛合金具有低弹性模量和高强 度、以及形状记忆效应等特性,同时还具有耐腐蚀和 优良的生物相容性,因此可以应用于各种工业以及生 物医学工程等领域,其中以 Ti-Nb 系合金最为引人注 转变,其中 β 、 α "、 ω 亚稳相分别具有体心立方结构 (空间群为 Im3m)、正交结构(空间群为 Cmcm)和 六方结构(空间群为 P6/mmm)^[6~8]。由于不同的相具 有不同的晶体结构,故其力学性质各不相同。因此可 以通过相变过程来改变 β 型钛合金的组织结构,从而 达到控制其力学性能的目的。但目前关于 β 型钛合金 中 β 、 α "、 ω 相的力学性质,特别是关于这些不同晶 体结构相弹性模量的大小尚存在争议。例如以往对 Ti-6Al-4V 合金的实验研究一般认为 ω 相具有最高的 弹性模量, α "相也具有比 β 相高的弹性模量^[9]; 最近 对于 Ti-Nb 系合金的实验研究却表明 α"相具有与 β 相 基本相当的弹性模量^[10]。因此,澄清以上关于钛合金 中不同晶体结构相弹性模量的争议对于开发具有低弹 性模量和高强度、以及形状记忆效应等高性能钛合金 具有重要的现实意义。近年来基于密度函数理论的第 一性原理计算已广泛应用于材料的结构和性能研究 中,研究结果表明第一性原理计算结果与实验结果有 很好的一致性[11~13]。本文主要采用基于密度函数理论 的赝势平面波方法和广义梯度近似系统研究 Ti-25at% Nb 合金中不同晶体结构 β 、 α "和 ω 相的结构稳定性及 文章编号: 1002-185X(2009)04-0663-04

其弹性性质。

1 理论方法与计算模型

采用基于密度函数理论(DFT)的赝势平面波方 法,并采用广义梯度近似(GGA)来处理交换关联能, 交换关联势取 Perdew-Burke-Ernzerhof (PBE)形式^[14,15]。 采用超软赝势,分别把 Ti 的 $3s^23p^63d^24s^2$ 和 Nb 的 4s²4p⁶4d⁴5s¹当作价电子,其它轨道的电子则视为芯电 子。平面波截断能取 400 eV, 倒空间中 k 点间的距离 选为 0.4 nm⁻¹。采用 Broyden-Fletcher-Goldfarb-Shanno (BFGS)方法对晶胞的晶格常数和晶胞内各原子所占 据的具体位置进行了充分的驰豫优化计算[16]。自洽循 环计算的能量收敛值设为 1×10⁻⁶ eV/atom,各原子间 相互作用力低于 0.02 eV·nm⁻¹。为计算 β 、 α "和 ω 相的 晶胞总能量,相应建立了不同的晶胞模型。计算体心 立方结构 β相时,采用空间群为 Fm3m 且具有 D03结 构的单胞,此单胞包含8个体心立方原胞。为计算正 交结构 α"相, 建立空间群为 Pmm2 的正交结构单胞。 此单胞中 Ti 原子占据(0,0,0), (0.5,0.5,0)和(0,0.6,0.5), 而 Nb 原子则占据(0.5,0.1,0.5)^[7]。在计算六方结构 ω 相时,则建立一个 2×2×1 的超晶胞,超晶胞的空间 群为 P6/mmm。

2 结果与讨论

首先对 Ti-25at%Nb 合金中不同晶体结构 β、α"和

收稿日期: 2008-03-31

基金项目: 国家自然科学基金 (50571063); 上海市重点基础项目 (04JC14054)

作者简介:姚 强,男,1981年生,博士生,上海交通大学材料科学与工程学院,上海 200240,电话: 021-54745593;通讯作者:孙 坚, E-mail: jsun@sjtu.edu.cn

ω相的晶胞体积和原子位置进行了优化,得到的平衡 晶格常数见表 1。从表 1 可以看出, β 相的平衡晶格常 数为 0.3260 nm,与实验值 0.3287 nm,以及文献中的 计算值 0.3273 nm 基本吻合^[3,17]。a"相的平衡晶格常数 为 a=0.3307 nm, b=0.4761 nm, c=0.4438 nm, m X 射 线试验得到的 a"相晶格常数为 a=0.319 nm, b=0.480 nm, c=0.464 nm, 两者存在一定的偏差^[3]。本文计算 得到的 a"相的 a 比实验值大, m c 却比实验值小。由 于 $β \rightarrow a$ "为亚稳的固态相变, β 相向 a"马氏体相转变过 程中,a"马氏体会受到 β 基体的约束,从而有可能造 成实际 a"相的晶格常数与计算值存在一定的偏差。ω相的晶格常数计算值为 a=b=0.4658 nm, c=0.2790 nm, 目前文献中没有 Ti-25at%Nb 合金中 ω 相晶格常数的 报道。除 ω 相外,本文计算所采用不同晶体结构相的 晶格常数均为实验结果。

表 1 β , α "和 ω 相的平衡晶格常数 Table 1 Equilibrium lattice constants of β , α " and ω phases

Phase	a/nm	<i>b</i> /nm	c/nm	
β	0.3260			
	0.3273 [17]			
	0.3287 [3]			
α"	0.3307	0.4761	0.4438	
	0.319 ^[3]	0.480 ^[3]	0.464 ^[3]	
ω	0.4658		0.2790	

不同晶系的晶体具有不同数量的独立弹性常数。 立方晶系的晶体具有 3 个独立的弹性常数(*C*₁₁, *C*₁₂ 和 *C*₄₄)。六方晶系的晶体具有 5 个独立的弹性常数 (*C*₁₁, *C*₁₂, *C*₁₃, *C*₃₃和 *C*₄₄),而正交晶系的晶体则具 有 9 个独立的弹性常数(*C*₁₁, *C*₂₂, *C*₃₃, *C*₁₂, *C*₁₃, *C*₂₃, *C*₄₄, *C*₅₅和 *C*₆₆)。根据 Born 弹性稳定性准则, 不同晶系晶体的弹性常数必须满足一定的条件该晶体 才能存在,否则该晶体结构不稳定^[18]。立方晶系、六 方晶系和正交晶系的晶体的弹性常数所必须满足的条 件如下:

(1) 立方晶系: $C_{44} > 0$, $C_{11} + 2C_{12} > 0$ 和 $C_{11} > |C_{12}|$ (2) 六方晶系: $C_{44} > 0$, $(C_{11} + C_{12})C_{33} > 2C_{13}^2$ 和 $C_{11} > |C_{12}|$

(3) 正交晶系: $C_{ii} > 0$ (*i*=1~6), $C_{22}C_{33} > C_{23}^2$ 和 $2C_{12}C_{13}C_{23} - C_{12}^2C_{33} - C_{13}^2C_{22} > 0$

为了计算晶体的弹性常数,可先对晶胞进行不同 的弹性变形,然后算出变形后的能量,并通过此能量 与未变形晶胞的能量差,求出弹性应变能,进而利用 弹性常数与应变能的关系计算得到弹性常数。弹性应 变能计算式如下:

$$U = \Delta E / V_0 = \frac{1}{2} \sum_{i}^{6} \sum_{j}^{6} C_{ij} e_i e_j$$
(1)

式中, ΔE 为变形前后晶胞的能量差值, V_0 为原始晶 胞的体积, C_{ii}为弹性常数, e_i和 e_i为应变。为计算立 方结构的 β 相的弹性常数,可采用 e₁=e₄=x 的变形模 式。对六方结构的ω相而言,可采用如下两种变形模 式: (1) $e_3=x$, (2) $e_1=e_4=x$ 。而为求 α "相的弹性常数, 则要采用以下 3 种变形模式: (1) e1= e4=x, (2) e2=e5=x, (3) $e_3 = e_6 = x$ 。 β 、 α "和 ω 相的弹性常数和杨氏模量的计 算结果见表 2。杨氏模量的计算采用 Voigt-Reuss-Hill 方法^[19]。从表 2 可以看出, β 相的弹性常数和杨氏模 量的计算值与文献中的计算结果基本吻合。将计算得 到的 β、α"和 ω 相的弹性常数分别代入上述判据, 计 算后发现,不同晶体结构 β 、 α "和 ω 相均满足其晶体 结构的弹性稳定性条件,即β、α"和ω相均可以在Ti-25 at% Nb 合金中存在。还对不同晶体结构 β 、 α "和 ω 相 的杨氏模量进行了计算,计算结果表明 Ti-25 at% Nb 合金中 ω 相的杨氏模量最高,而 β 相的杨氏模量最低。

表 2 β , α"和 ω 相的弹性性质 Table 2 Elastic properties of β , α" and ω phases

				Elastic pro	sper ties or	p, α and t	o phases			
Phase	C11/GPa	C ₁₂ /GPa	C13/GPa	C ₂₂ /GPa	C ₂₃ /GPa	C33/GPa	C44/GPa	C55/GPa	C ₆₆ /GPa	E/GPa
β	117.29	105.62					19.90			35.29
	128.5 [17]	115.5 [17]					14.9 [17]			31.14 ^[17]
α"	129.89	91.12	126.81	148.22	69.32	135.59	28.38	23.13	39.65	46.93
ω	162.15	124.94	84.78			234.29	22.28		18.61	75.62

为了从能量学角度来研究不同晶体结构 β_{α} "和 ω 相的结构稳定性,分别计算了 β_{α} "和 ω 相的内聚能,内聚能的计算公式如下:

 $E_{coh} = E_{Ti} + E_{Nb} - E_{Ti-Nb}$ (2) 式中, E_{Ti} 和 E_{Nb} 分别代表 Ti 和 Nb 原子的单原子能量, $E_{\text{Ti-Nb}}$ 是 β、α"和 ω 相的总能量。不同晶体结构 β、α" 和 ω 相内聚能的计算结果见表 3。由表 3 可知, β 相 的内聚能最低, 而 α"相的内聚能最高。这说明在 Ti-25at%Nb 合金中 β 相的结构稳定性最低, 而 α"相的结 构相对最稳定。

	表 3	β,α"和ω相的内聚能		
Table 3	Cohesive energies of β , α'' and ω phases			
	Phase	$E_{\rm coh}/{\rm eV}{\cdot}{\rm atom}^{-1}$		
	β	7.2363		
	ω	7.2429		
α"		7.2532		

为了揭示不同晶体结构 β 、 α "和 ω 相结构稳定性的物理本质,计算了 β 、 α "和 ω 相的电子结构。图 1 为计算得到的不同晶体结构 β 、 α "和 ω 相的态密度分布 (DOS)。图中虚线表示费米(Fermi)能级的位置。从图 1 可以看出,在 β 相的 DOS 图中存在着一个能区分出 高能反键态和低能成键态区域的峰谷(或称为伪能 隙),而费米能级处于成键态区域;在 α "和 ω 相的 DOS 图中却不存在明显的峰谷。一般来说,费米能级的位 置和费米能级处态密度的数值 $N(E_{\rm F})$ 决定着材料的稳 定性,费米能级处态密度的数值 $N(E_{\rm F})$ 越低,材料结构 越稳定^[20]。由于 β 相 DOS 图中的费米能级处于成键 态区域,而不是处于区分出高能反键态和低能成键态 区域的伪能隙位置,导致了较高的 $N(E_{\rm F})$ 值(2.44 states/(eV-atom)),这说明在 Ti-25at%Nb 合金中 β 相

- 图 1 Ti-25at%Nb 合金中不同晶体结构 β 相(a), α"相(b) 和 ω 相(c)态密度分布
- Fig.1 Density of states of the β phase (a), α'' phase (b) and ω phase (c) in the Ti-25at%Nb alloy

的结构稳定性较低;而 α "和 ω 相 DOS 图中费米能级 处的 $N(E_{\rm F})$ 值分别为 1.64 states/(eV·atom)和 1.65 states/(eV·atom),说明 α "和 ω 相的结构相对 β 相而言更稳定,且 α "相的结构稳定性相对最高。这与上述从内聚能分析得出的结果一致。

上述计算结果表明, Ti-25at%Nb 合金中 β、α"和 ω相均满足其结构弹性稳定性要求,其中 α"相的结构 稳定性最高, 而 β 相的结构稳定性最低; 计算结果还 表明, Ti-25at%Nb 合金中 ω 相具有最高杨氏模量, β 相则具有最低杨氏模量。因此可以认为, Ti-25at%Nb 合金中 β 相低的杨氏模量可能与 β 相低的结构稳定性 有关。有研究表明, Ti-Nb 合金的 β 相结构稳定性和 弹性模量随着 Nb 含量增加单调上升; 当 Nb 含量接近 10at%时, β相刚好满足其结构弹性稳定性要求,此时 β相弹性模量最低^[21]。虽然从 Ti-Nb 二元平衡相图分 析, Ti-25at%Nb 合金平衡组织应该是富钛 α 和富铌 β 双相组织,但实验研究结果已经表明在 Ti-25at%Nb 合金中可以获得单相 β 结构,该合金同时存在 $\beta \rightarrow \alpha$ "、 ω亚稳相转变^[3,7]。因此要获得低模量的钛合金,可以 通过合金化和适当热处理抑制 α "或 ω 亚稳相转变, 得到单一的 β 组织;通过 ω 亚稳相弥散析出则可以增 加β相基体的强度,进而可以改善钛合金的形状记忆 效应。

3 结 论

1) Ti-25at%Nb 合金中 β 、 α "和 ω 相均满足其结构 弹性稳定性要求,其中 α "相的结构稳定性最高,而 β 相的结构稳定性最低;

 2) Ti-25 at% Nb 合金中ω相具有最高弹性模量, β相则具有最低弹性模量。

参考文献 References

- [1] Saito T, Furuta T, Hwang J H et al. Science[J], 2003, 300: 464
- [2] Miyazaki S, Kim H Y, Hosoda H. Mater Sci Eng A[J], 2006, 438~440: 18
- [3] Kim H Y, Ikehara Y, Kim J I et al. Acta Mater[J], 2006, 54: 2419
- [4] Ping D H, Cui C Y, Yin F X et al. Scripta Mater[J], 2006, 54: 1305
- [5] Kim H Y, Sasaki T, Okutsu K et al. Acta Mater[J], 2006, 54: 423
- [6] Villars P. Pearson's Handbook of Crystallographic Data for Intermetallic Phases[M]. Ohio: Materials Park, 1991: 2875
- [7] Moffat D L, Larbalestier D C. *Metall Trans A*[J], 1988, 19: 1677

- [8] Errandonea D, Meng Y, Somayazulu M et al. Physica B[J], 2005, 355: 116
- [9] Lee Y T, Welsch G. Mater Sci Eng A[J], 1990, 128: 77
- [10] Hao Y L, Niinomi M, Kuroda D et al. Metall Mater Trans A[J], 2002, 33: 3137
- [11] Lee N T S, Tan V B C, Lim K M. Appl Phys Lett[J], 2006, 88: 31 913
- [12] Peng Ping(彭平), Han Shaochang(韩绍昌), Zheng Caixing (郑采星) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2005, 34(6): 854
- [13] Zhuang Houlong(庄厚龙), Peng Ping(彭平), Zhou Dianwu (周惦武) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2006, 35(2): 247
- [14] Vanderbilt D. Phys Rev B[J], 1990, 41: 7892

- [15] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett[J], 1996, 77: 3865
- [16] Fischer T H, Almlof J. J Phys Chem[J], 1992, 96: 9768
- [17] Ikehata H, Nagasako N, Furuta T *et al. Phys Rev B*[J], 2004, 70: 174 113
- [18] Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. Oxford: Clarendon Press, 1954: 141
- [19] Anderson O L. J Phys Chem Solids[J], 1963, 24: 909
- [20] Hong T, Watson-Yang T J, Freeman A J et al. Phy Rev B[J], 1990, 41: 12 462
- [21] Yao Qiang(姚 强), Xing Hui(邢 辉), Guo Wenyuan(郭文渊)
 et al. Chin J Nonfer Met(中国有色金属学报)[J], 2008, 18(1):
 126

First-Principle Calculation of Phase Stability and Elastic Property of β , α'' and ω in Ti-25 at%Nb Alloy

Yao Qiang, Xing Hui, Guo Wenyuan, Sun Jian (Shanghai Jiaotong University, Shanghai 200240, China)

Abstract: The pseudopotential method and the generalized gradient approximation have been employed to calculate the elastic constant, cohesive energy and electronic structure of β , α'' and ω metastable phases in the Ti-25at%Nb alloy. The phase stability of β , α'' and ω phases is discussed adopting these calculated results. The results show that all of the β , α'' and ω phases satisfy the criteria of elastic stability. The phase stability of α'' phase is the highest and that of β phase the lowest among β , α'' and ω phases. The results further show that the Young's modulus of ω phase is the highest and that of β phase the lowest in the Ti-25at%Nb alloy.

Key words: titanium alloy; phase stability; elastic property; first-principles

Biography: Yao Qiang, Candidate for Ph. D., School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, P. R. China, Tel: 0086-21-54745593; Correspondent: Sun Jian, E-mail: jsun@sjtu.edu.cn