Li_{3+x}V₂(PO₄)₃的合成及电化学性能研究

刘民忠, 郭学益

(中南大学,湖南 长沙 410083)

摘 要:通过碳热还原法合成了化学计量比的 Li₃V₂(PO₄)₃和富锂的锂离子电池正极材料 Li_{3+x}V₂(PO₄)₃ (*x*=0.02, 0.04, 0.05, 0.06)。利用 XRD、SEM 和电化学测试对 Li_{3+x}V₂(PO₄)₃进行研究表明:所合成的试样均为单斜晶系结构,无杂相存在; SEM 测试发现, 掺锂可以明显改善 Li₃V₂(PO₄)₃一次颗粒表面的结构和形貌;电化学性能测试表明,随着掺锂量的提高,试样的循环性能变好。通过研究发现, Li_{3.04}V₂(PO₄)₃具有较高的初始容量和良好的循环性能。

关键词: 锂离子电池; Li₃V₂(PO₄)₃; 掺杂; 碳热还原

中图法分类号: TM912.9

文献标识码:A

聚阴离子型化合物是一系列含有四面体或者八面 体阴离子结构单元(xO_m)ⁿ⁻(x=P,S,As,Mo和W)的化合物 的总称。近年来许多研究工作者报道了聚阴离子型锂 离子电池正极材料,发现,该类材料具有晶体框架结 构稳定、充放电电压平台灵活可控等优点[1],极有可 能被推动成为新一代锂离子电池正极材料^[2]。因而聚 阴离子型锂离子电池正极材料成为近年来锂离子电池 正极材料的开发研究热点[3~11]。单斜晶系结构的 Li₃V₂(PO₄)₃由于具有较高的容量和良好的电化学循环 性能而引起人们的注意,被认为是比LiFePO4性能更好 的聚阴离子型正极材料^[12],国内外对该材料均有报 道。然而,阻碍Li₃V₂(PO₄)₃作为正极被广泛应用的主 要问题是Li₃V₂(PO₄)₃循环性能较差,掺杂是改变其循 环性能的一种较好的手段。考虑到锂掺杂可以在很宽 的范围内形成固溶体,以保证产品良好的均匀性与单 一性结构,因此本实验采用碳热还原法制备锂离子掺 杂的Li₃V₂(PO₄)₃正极材料,研究不同含量的锂离子对 其结构、形貌和电化学性能的影响。

1 实 验

将 LiOH·H₂O、V₂O₅、NH₄H₂PO₄和乙炔黑(其中 乙炔黑过量 25%)按照组成 Li_{3+x}V₂(PO₄)₃(*x*=0, 0.02, 0.04,0.05, 0.06)的化学计量比混合球磨 4 h, 使原料充 分混合均匀。并在氩气的保护下于 300℃预处理 4 h, 然后于 750℃煅烧 20 h,随即自然降温即可。

按 Li₃V₂(PO₄)₃:C:PVDF=8:1:1 的质量比混合均匀 后涂片,真空烘干后制成正极片。以锂片为负极,1 mol/L LiPF₆/EC+EMC+DMC=1:1:1(体积比),Cellgard2400 聚丙烯多孔膜为隔膜,在充满氩气的干燥手套箱 中装成 CR2025 型扣式电池。在 3.0~4.2 V 电压范围内 进行充放电试验。

采用 CS800 红外碳硫检测仪(Eltar 公司,德国)对 合成材料中碳的含量进行分析;采用 PANalytical B.V. 公司 X'Pert PRO 型 X 射线衍射仪(荷兰产)对材料进 行物相分析;采用 JEOL 公司 JSM-6380LV 扫描电子 显微镜(美国产)对试样进行形貌分析;采用武汉金诺 电子有限公司生产的蓝电 CT2001A 型充放电性能测 试仪对试样进行充放电性能测试;电池的电化学阻抗 和电极的线性极化曲线在上海辰华 CHI660B 电化学 工作站上完成。

2 结果与讨论

2.1 Li_{3+x}V₂(PO₄)3 试样的 XRD 分析

图1所示为不同掺Li量试样的XRD图谱。与PDF标准卡片对照,可看出,合成的试样为Li₃V₂(PO₄)₃的单斜晶系结构,无其它杂相存在。说明掺杂Li⁺并没有改变Li₃V₂(PO₄)₃的单斜晶系结构。同时可以看到,随着掺杂Li量的不同,衍射峰稍有变化,晶面衍射峰的强度首先随掺杂Li量的增加而增强,然后稍有减弱。

2.2 Li_{3+x}V₂(PO₄)3 试样的表面形貌分析

图 2 为 Li_{3+x}V₂(PO₄)₃试样的 SEM 照片。可以发现, 掺锂对试样的一次颗粒形貌有明显的影响。随着掺杂 Li 量的增大,试样的一次颗粒变小,但 Li 量增大到 0.06 时,一次颗粒有所变大,而且形貌变为较规则的 类球形。形貌的变化可能与过量的锂对颗粒表面的熔 合作用有关,锂越过量,熔合作用就越强。

文章编号: 1002-185X(2009)07-1184-04

收到初稿日期: 2008-10-26; 收到修改稿日期: 2009-05-12

作者简介: 刘民忠, 男, 1969年生, 博士生, 副研究员, 中南大学冶金科学工程学院, 湖南 长沙 410083, 电话: 0731-8836822, E-mail: csulmz@163.com

2.3 Li_{3+x}V₂(PO₄)3 试样的首次充放电性能

图 3 为 Li_{3+x}V₂(PO₄)₃试样以 0.2 C 倍率充放电时 的首次充放电曲线。为了便于比较,将试样的首次充、 放电容量及库仑效率列表 1。可以看出, Li 掺杂对产

图 1 Li_{3+x}V₂(PO₄)₃ 试样的 XRD 图谱 Fig.1 XRD patterns of Li_{3+x}V₂(PO₄)₃ samples

物Li₃V₂(PO₄)₃的充放电性能有明显的影响。随着掺杂 Li 含量的增加,试样的充电、放电容量均呈先增大后 减小的趋势。同时可以发现,随着掺杂 Li 量的增加, 试样 Li3+xV2(PO4)3 的库仑效率增大,当 x=0.04 时试样 的首次库仑效率高且放电容量较高,首次库仑效率高 达 93.9%, 首次充电容量达 131 mAh·g⁻¹, 首次放电容 量达 123 mAh·g⁻¹。同时由图 3 可以看出,未掺杂试样 的充放电曲线在 3.0~4.2 V 之间有 3 个平台,平台之间 界限十分明显。这种遵循多相反应机制[13]的电化学反 应在平台附近的相变过程中,会陆续产生新的相界面, 阻碍 Li⁺离子的迁移,从而影响材料的电化学性能。随 着掺杂 Li 含量的增加, 电位平台之间呈兼并的趋势。 由此可以说明, Li⁺离子掺杂可使 Li_{3+r}V₂(PO₄)₃在充、 放电过程中出现由多相反应机制向单相反应机制转化 的趋势。这不仅有利于锂离子的顺利脱嵌,而且减小 了循环过程中晶胞体积变化的程度,将大大提高材料 的充放电比容量和循环寿命。

图 2 Li_{3+x}V₂(PO₄)₃试样的 SEM 照片

2.4 Li_{3+x}V₂(PO₄)3 试样的循环性能

图 4 为 Li_{3+x}V₂(PO₄)3 试样以 0.2 C 倍率充放电时

的循环性能曲线。由图可以看出,Li 掺杂对 Li_{3+x}V₂(PO₄)₃试样的循环性能有明显的影响。当掺杂 量 x=0, x=0.02, x=0.04, x=0.05, x=0.06 时,试样的首次放电容量分别为 117, 119, 123, 121 和 120 mAh·g⁻¹,循环 30 次后容量分别为 105, 109, 114, 110 和 108 mAh·g⁻¹,循环 30 次后各试样的衰减率分别为 10.3%、8.40%、7.32%、9.09%、10.0%。由此可见,随着 x 的增大材料的循环性能有一定程度的改善。当 x=0.04 时,试样 Li_{3+x}V₂(PO₄)₃的循环性能相对较好。

表 1 Li_{3+x}V₂(PO₄)₃试样的首次充放电容量及库仑效率

 Table 1
 The first charge-discharge capacity and coulombic

 efficiency of Li_{3+x}V₂(PO₄)₃

Doping content	First charge capacity /mAh·g ⁻¹	First discharge capacity /mAh·g ⁻¹	Coulomb efficiency/%
<i>x</i> =0	130	117	90.0
<i>x</i> =0.02	132	119	90.2
<i>x</i> =0.04	131	123	93.9
x=0.05	130	121	93.1
<i>x</i> =0.06	130	120	92.3

图 4 Li3+xV2(PO4)3试样的循环性能曲线

2.5 Li_{3+x}V₂(PO₄)₃试样的交流阻抗

图5为Li_{3.04}V₂(PO₄)₃和Li₃V₂(PO₄)₃试样在不同荷 电状态下的交流阻抗图谱。可以看到,Li_{3.04}V₂(PO₄)₃ 和Li₃V₂(PO₄)₃试样的电化学阻抗谱图均由高频区的半 圆弧和低频区的斜线组成。高频区的半圆弧表示的是 电荷转移电阻和电极/溶液界面的双电层电容。频区的 斜线表示的是锂离子在电极体相中的扩散引起的 Warburg阻抗。由图可以发现,在相同荷电状态下 Li_{3.04}V₂(PO₄)₃的电荷转移阻抗最小。说明掺杂适量Li 后的试样,电极体系的反应阻力降低,电荷的转移更 加容易进行,因而电化学性能得到改善。

- 图 5 Li_{3.04}V₂(PO₄)₃(a)和Li₃V₂(PO₄)₃(b)在不同荷电状态下的交流 阻抗谱图
- Fig.5 Nyquist plots for EIS of $Li_{3.04}V_2(PO_4)_3(a)$ and $Li_3V_2(PO_4)_3$ (b) at different charge states

2.6 Li_{3+x}V₂(PO₄)₃试样的电极交换电流密度

为了更好地考察 Li 掺杂对 Li₃V₂(PO₄)₃ 试样嵌锂 过程动力学的影响,对 Li₃V₂(PO₄)₃ 材料和 Li_{3.04}V₂(PO₄)₃ 材料进行电化学活化,然后采用线性极 化法测试这两种化合物在充电 50%状态下的线性极化 曲线,如图 6 所示。可分别求得^[14]Li₃V₂(PO₄)₃、Li_{3.04}V₂-(PO₄)₃ 材料的交换电流密度为 3.54 和 4.42 mA·g⁻¹, Li_{3.04}V₂(PO₄)₃ 试样交换电流密度明显增大。这是由于 影响 Li₃V₂(PO₄)₃ 电极的交换电流密度的因素主要有

图 6 Li_{3.04}V₂(PO₄)₃和Li₃V₂(PO₄)₃电极的线性极化曲线(充电 50%) Fig.6 Linearity polarization curve (50% charge) of (a) Li_{3.04}V₂(PO₄)₃; (b) Li₃V₂(PO₄)₃

材料的结构、表面特性及反应物与产物的浓度等,本研究控制各种 Li₃V₂(PO₄)₃ 电极保持在比较接近的放 电深度下进行测试,因此,Li₃V₂(PO₄)₃ 材料交换电流 密度的差别主要是由于材料的结构与表面性能的不同 所引起的。Li 掺杂的 Li_{3.04}V₂(PO₄)₃ 试样其颗粒细化而 且结构得到改善,且提高了电子导电性能,因而交换 电流密度增大。电极材料的交换密度能反应该电极反 应的可逆程度,说明体相掺杂对 Li₃V₂(PO₄)₃ 材料的循 环性能有改善作用,这和电化学性能测试的结果是一 致的。

3 结 论

1) 用碳热还原法可以合成化学计量比的 Li₃V₂-(PO₄)₃ 和富锂的锂离子电池正极材料 Li_{3+x}V₂(PO₄)₃ (x=0.02,0.04,0.05,0.06)。

2)不同含量锂离子掺杂的 Li_{3+x}V₂(PO₄)₃试样均 为单斜晶系结构,无杂相存在,锂掺杂可以明显改善 Li₃V₂(PO₄)₃一次颗粒表面的结构和形貌。

3) x=0.04 是掺锂最佳值,所得到的 Li_{3.04}V₂(PO₄)₃ 试样的电化学性能相对最好,具有较高的初始容量和 良好的循环性能,并且其电荷转移阻抗减小,交换电 流密度增大。

参考文献 References

- Nanjundaswamy K S, Padhi A K, Goodenough J B et al. Solid State Ionics[J], 1996, 92(1~2): 1
- [2] Shi Zhicong(施志聪), Yang Yong(杨 勇). Progress in Chemistry(化学进展)[J], 2005, 17(4): 604
- [3] Zhong Shengkui, Yin Zhoulan, Wang Zhixing et al. Journal of

Inorganic Chemistry[J], 2006, 22(10): 1843

- [4] Zhong Shengkui, Yin Zhoulan, Wang Zhixing et al. Transactions of Nonferrous Metals Society of China[J], 2006, 16(Suppl): S708
- [5] Zhong Shengkui, Yin Zhoulan, Wang Zhixing et al. J Cent South Univ Techno[J], 2007, 14(3): 340
- [6] Zhong Shengkui, Yin Zhoulan et al. Rare Metals[J], 2007, 26(5): 445
- [7] Zhong Shengkui(钟胜奎), Yin Zhoulan(尹周澜), Wang Zhixing(王志兴) et al. Journal of Functional Materials(功能 材料)[J], 2006, 37(10): 1613
- [8] Zhong Shengkui(钟胜奎), Yin Zhoulan(尹周澜), Wang Zhixing(王志兴). Battery Bimonthly(电池)[J], 2006, 36(6): 449
- [9] Hu Y Q, Doeff M M. Kostecki R *et al. J Electrochem Soc*[J], 2004, 151(8): A1279
- [10] Barker J, Saidi M Y, Swoyer J L. US Patent: 6387568[P], 2002
- [11] Barker J, Saidi M Y. US Patent: 5871866[P], 1999
- [12] Pistoia G, Antonini A, Rosati R. Journal of Electroanalytical Chemistry[J], 1996, 410: 115
- [13] Pistoia G, Antonini A, Rosati R. Journal of Electroanalytical Chemistry[J], 1996, 410: 115
- [14] Zhong Shengkui(钟胜奎). Synthesis and Electrochemical Properties of LiVPO₄F and Li₃V₂(PO₄)₃ Cathode Materials for Lithium-Ion Batteries(锂离子电池正极材料 LiVPO₄F 和 Li₃V₂(PO₄)₃ 的合成及电化学性能研究[D]. Changsha: Central South University, 2007

Synthesis and Electrochemical Performance of Li_{3+x}V₂(PO₄)₃

Liu Minzhong, Guo Xueyi

(Central South University, Changsha 410083, China)

Abstract: Stoichiometric and lithium-rich $L_{i_{3+x}}V_2(PO_4)_3$ (x=0.02,0.04,0.05,0.06) for lithium batteries was prepared by a carbon-thermal reduction (CTR) process. The properties of the $L_{i_{3+x}}V_2(PO_4)_3$ were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement. The results show that the samples have monoclinic structure, without any other phases in samples. The SEM images exhibit that the surface structure of the primary particles is clearly improved. The measurement of electrochemical performance shows that the cycle ability and the first discharge capacity are also improved with the doping of lithium. **Key words:** lithium batteries; $L_{i_3}V_2(PO_4)_3$; doping; carbon-thermal reduction

Biography: Liu Minzhong, Candidate for Ph.D., Associate Professor, School of Metallurgy Science and Engineering, Central South University, Changsha 410083, P. R. China, Tel: 0086-731-8836822, E-mail: csulmz@163.com