Si₃N_{4(p)}/SiC_(w)协同复合 MoSi₂材料的 强韧化及机理研究

周宏明,易丹青,柳公器,肖来荣

(中南大学,湖南 长沙 410083)

摘 要:采用X射线衍射(XRD)、扫描电子显微镜(SEM)、维氏硬度计、电子万能材料试验机研究MoSi₂-Si₃N_{4(p}/SiC_(w) 复合材料的结构、形貌、硬度、断裂韧性,并对SiC晶须和Si₃N₄颗粒复合强韧化MoSi₂的机理进行了探讨。结果表明, SiC晶须和Si₃N₄颗粒对MoSi₂具有协同强韧化作用,MoSi₂-20%Si₃N_{4(p}-20%SiC_(w)(体积分数,下同)复合材料的抗弯强 度达427 MPa,室温断裂韧性达到10.4 MPa·m^{1/2},均高于单一强韧化剂的强韧化效果。MoSi₂-20%Si₃N_{4(p}-20%SiC_(w)复 合材料的强化机理为细晶强化和弥散强化;韧化机制为细晶韧化、裂纹偏转与分支和微桥接韧化。

关键词: MoSi₂; 复合材料; Si₃N₄颗粒; SiC 晶须; 强韧化机制

中图法分类号: TG 148 文献标识码: A 文章编号: 1002-185X(2009)11-1955-05

MoSi₂具有较高的熔点(2030 ℃)、较低的密度 (6.24 g/cm³)和良好的高温抗氧化能力等特性,已成为 极具发展潜力的高温结构材料^[1,2]。美国国家航空和 宇宙航行局^[3]己把 MoSi₂作为工作温度高达 1600 ℃ 的涡轮发动机最佳候选材料展开研究。然而,MoSi₂ 作为高温结构材料应用的最大障碍是它的室温韧性 和高温强度不足^[4,5],在 900~1000 ℃会发生脆性-韧 性转变(BDT),BDT 温度以下呈现陶瓷状脆性,BDT 温度以上具有金属般塑性,特别是当温度升高到1400 ℃以上时急剧软化;其次它在 450~550 ℃时会发生 "pest"氧化。为了提高 MoSi₂的综合使用性能,加 入某种异相颗粒、晶须或长纤维制备 MoSi₂基复合材 料是改善其力学性能的有效途径^[6~10]。

Si₃N₄具有高的强度,良好的抗热震性能,相对 较高的室温断裂韧性,在高温下与 MoSi₂在热力学 上稳定。Si₃N₄的添加不仅可提高 MoSi₂的力学性 能,并可大幅度提高其抗氧化性能^[11]。Robert 等人 ^[12]的研究表明,在 MoSi₂中添加 30%~50%的 Si₃N₄, 可在其表面形成 Si₂ON 保护性薄膜,大幅度提高其 抗氧化能力,避免"pest"氧化发生。作者前期研究 工作^[13]表明,添加 Si₃N₄可大幅度提高 MoSi₂的室 温韧性及抗弯强度。SiC 颗粒及其晶须作为 MoSi₂ 的强韧化剂已有较多的研究报道,具有显著的强韧 化效果,研究表明^[14],经热压法制备的 SiC/MoSi₂ 纳米复合材料在 1520 K 时的弯曲强度从 77 MPa 提 高到 606 MPa。目前,采用 SiC 晶须和 Si₃N₄颗粒复 合强韧化 MoSi₂的研究尚未见报道。本实验以 Si₃N₄ 颗粒和 SiC 晶须作为 MoSi₂的复合强韧化剂,采用 湿法混合随后热压制成 MoSi₂-Si₃N_{4(p)}/SiC_(w)复合材 料,通过对其力学性能和显微组织以及断裂特征进 行分析,探讨 Si₃N₄颗粒和 SiC 晶须对 MoSi₂的增韧 补强效果及其作用机制。

1 实 验

采用燃烧合成法制备纯度为 99.9%的 MoSi₂ 原料 粉末,其平均粒度为 2.5 μm; β-Si₃N₄的纯度为 99.9%, 粒度小于 1 μm; β-SiC 晶须的纯度为 98%, 直径小于 0.5 μm,长径比大于 10,采用盐酸和氢氟酸酸洗、超 声波分散后,烘干待用。三者按一定的体积含量进行 配料,与若干 WC 球装入尼龙罐并加入适量的无水乙 醇,加盖密封后放在滚筒式球磨机上混合 48 h,随后 干燥过筛并倒入石墨模具,在 30 MPa 压力下,加热 到 1700 ℃热压 30 min 制成 ϕ 52 mm×6 mm 的坯材, 其 组 成 分 别 为 MoSi₂ 、 MoSi₂-20%Si₃N_{4(p)} 、 MoSi₂-20%SiC_(w)、MoSi₂-20%Si₃N_{4(p)}。

采用三点弯曲法在 Instron 电子万能材料试验机 上测抗弯强度,试样尺寸3 mm×4 mm×36 mm,跨 距 30 mm,加载速度 0.5 mm/min;由于压痕法测定断 裂韧性简易直观,而且对许多脆性材料来说,压痕断 裂韧性接近于用双悬臂梁法的测定值。更为重要的是

收稿日期: 2008-10-25

基金项目:中国博士后基金资助项目(20060400261)

作者简介:周宏明,男,1974年生,博士后,副教授,中南大学材料科学与工程学院,湖南长沙 410083,电话: 0731-8877173

稀有金属材料与工程

它可以在小试样上进行测试。本实验中所使用的断裂 韧性试样,乃是由室温三点弯曲试样经压断后,将断 口进行磨平抛光,然后进行测试。断裂韧性的计算公 式如下^[15]:

$$K_{\rm HC} = 0.016\sqrt{E/H} \left(P/C^{3/2} \right) \tag{1}$$

式中: *E* 为杨氏模量; *H* 为维氏硬度; *P* 为载荷(N); *C* 为半裂纹长度(mm)。用阿基米德法测体积密度; 用 Dmax-2500VB X 射线衍射仪(Cu Kα 辐射, λ=0.1541 nm)对所制备的样品进行结构分析,步进宽度为 0.02°, 计数时间为 3 s。用 Sirion200 型场发射扫描电镜对材 料的断口形貌、显微组织、压痕裂纹和微裂纹进行分 析; 在 POLYVAR MET 金相测试系统上测定材料的硬 度,测量的载荷为 49 N。

2 结果与讨论

2.1 样品的显微结构分析

采用 X 射线衍射仪对热压后的 MoSi₂-20%Si₃N_{4(p)}、MoSi₂-20%SiC_(w)和 MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料进行分析,结果如图1所示。

从图 1 可见,所制备复合材料主要由所添加的强 化相和 MoSi₂组成,另外均含有少量的 Mo₅Si₃,这主 要是由于 MoSi₂和 O₂在热压条件下的高温反应所致 (见反应式(2))。强化相与 MoSi₂之间没有其它新的产 物,即在高温热压工艺条件下,SiC、Si₃N₄和 MoSi₂ 均能保持各自的稳定性,没有明显的化学反应发生, 这是制备性能优良复合材料的前提。

采用扫描电子显微镜对纯 MoSi₂和 MoSi₂-20%Si₃N_{4(p)}、 MoSi₂-20%SiC_(w)、 MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料的显微组织进行了观察,结果如图 2 所示。

由图 2 可见,所制备样品的组织均比较致密,只 有极少量的气孔存在,这与样品的致密度分析结果是 一致的(表 1)。从图 2a 可以看出,纯 MoSi₂的显微组 织中包括灰色区域的 MoSi₂、白色区域的 Mo₅Si₃和黑 色的区域的 SiO₂,其中 Mo₅Si₃和 SiO₂是由 MoSi₂和 O₂在热压条件下的高温反应所致(式(2))。SiO₂在 XRD 分析中未能被检测出来可能是由于样品中 SiO₂ 的量 较少缘故。

$$5MoSi_2 + 7O_2 = Mo_5Si_3 + 7SiO_2$$
 (2)

图 1 MoSi2 基复合材料的 XRD 图谱

Fig.1 XRD patterns of MoSi₂-based composites: (a) $MoSi_2-20\%Si_3N_{4(p)}$, (b) $MoSi_2-20\%Si_C(w)$, and (c) $MoSi_2-20\%Si_3N_{4(p)}-20\%Si_C(w)$

图 2 样品的显微组织(背散射电子像) Fig.2 SEM images of samples: (a) MoSi₂, (b) MoSi₂-20%Si₃N_{4(p)}, (c) MoSi₂-20%SiC_(w), and (d) MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w) 图 2b、2c 和 2d 分别为 MoSi₂-20%Si₃N_{4(p)}、 MoSi₂-20%SiC_(w)、MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材 料的扫描电镜照片。图中黑色条状部分为强化相,大 片灰色部分为 MoSi₂基体,白色岛状部分为 Mo₅Si₃。 从图 2 可以清晰看出,各个相之间结合比较紧密,而 且分布均匀,这为良好的性能奠定了较好的基础;另 外,虽然 SiC 晶须和 Si₃N₄粒子分布比较均匀,但许 多粒子已明显聚集长大。从图 2 可以看出,随强化相 含 量 的 增 多 , MoSi₂ 的 晶 粒 变 得 更 细 小 , MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料具有最小的晶 粒组织。

2.2 复合材料的力学性能

采用阿基米德法对热压成形的试样进行致密度 的测量结果如表 1 所示。采用式(1)计算材料的断裂 韧度, MoSi₂ 多晶体的杨氏模量 E=440 GPa, Si₃N₄ 颗粒的 E=300 GPa, SiC 晶须的 E=448 GPa, 对于一 定体积分数的 MoSi₂-Si₃N_{4(p)}/SiC_(w)复合材料, $E=E_mV_m+ E_fV_f+E_wV_w$,其中 E_m 、 $E_f 和 E_w$ 为 MoSi₂、 Si₃N₄颗粒和 SiC 晶须的模量,而 V_m 、 $V_f 和 V_w$ 为其 体积分数^[16]。采用 294 N 的载荷,使 C/a=2.5(C 为裂 纹半长度 mm, a为压痕半长度 mm)。材料的力学性 能如表 1 所示。

从表1可见,样品的致密度均在96%以上,说明 所采用的热压工艺参数是可行的,只是随强化相添加 量增大,其致密度略有降低,这是由复合材料中添加 较多的高熔点强化相导致的。从表1还可看出,添加 了强化相的复合材料,其抗弯强度、断裂韧度和维氏 硬度均较纯 MoSi₂得到大幅度提高,其中同时添加SiC 晶须和 Si₃N₄颗粒的复合材料具有最高的抗弯强度、 断裂韧度和维氏硬度,分别达到 427 MPa、10.4 MPa·m^{1/2}和 11.4 GPa,分别为纯 MoSi₂抗弯强度和断 裂韧度的 2 倍、3.4 倍和 1.4 倍,结果表明 SiC 晶须和 Si₃N₄颗粒对 MoSi₂具有良好的协同强韧化效果。

表 1 样品的致密度(d)与力学性	能
-------------------	---

Table 1	Mechanical properties and densities of fracture
	toughness samples

cougnitess samples						
Sample	Density, d/%	Bending strength, $\sigma_{\rm bending}/$ MPa	Fracture toughness, $K_{\rm IC}/{\rm MPa}\cdot{\rm m}^{1/2}$	HV/GPa		
MoSi ₂	98.6	216	3.1	8.1		
$MoSi_220\%Si_3N_{4(p)}$	97.5	335	8.2	9.3		
MoSi ₂ -20% SiC _(w)	98.1	368	7.6	9.6		
$\frac{MoSi_2-20\%Si_3N_{4(p)}}{-20\%SiC_{(w)}}$	96.3	427	10.4	11.4		

2.3 复合材料的强韧化机理分析

2.3.1 复合材料的强化机理

为分析复合材料的强化机制,通过扫描电镜对纯 MoSi₂和复合材料的断口形貌进行分析,结果如图 3 所示。

从图 3a 可以看出, 纯 MoSi₂的晶粒粗大, 断口平 齐, 呈解理断裂, 在晶界上分布有黑色的 SiO₂粒子, 并有深色气孔存在, 大多分布于灰色 MoSi₂相的晶界 上, 这主要是 MoSi₂的结晶各相异性和层状结构造成 的^[16]。SiC 晶须和 Si₃N₄粒子的引入, 在一定程度上影 响了 MoSi₂的某些本征特性, 有可能使单晶 MoSi₂的

Fig.3 SEM images of fracture surface of t samples by three-point bending test: (a) MoSi₂, (b) MoSi₂-20%Si₃N_{4(p)}, (c) MoSi₂-20%SiC_(w), and (d) MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)

低能解理面发生一些变化,同时削弱了晶界,致使沿晶断裂分量有所增加。从图 3b、3c 和 3d 可看出,添加强化相的复合材料的断口宏观上表面不平,微观上有许多较小的不规则的平面组成,说明加入 SiC 晶须或 Si₃N₄粒子后,MoSi₂的晶粒细化,呈现出解理-沿晶断裂的模式,而且还可发现,同时添加 SiC 晶须和 Si₃N₄粒子的复合材料的晶粒细化作用最明显(与图 2d 的分析结果一致),这是导致 MoSi₂-20% Si₃N₄(p)-20%SiC_w复合材料具有最高抗弯强度的主要 原因。从图 2b、2c、2d 和图 3b、3c、3d 都可以看到有强化相在晶界析出,析出的 SiC 晶须或 Si₃N₄颗粒均有弥散强化的作用。因此,复合材料抗弯强度的提高主要是由于 SiC 晶须或 Si₃N₄颗粒的弥散强化和 MoSi₂基体的晶粒细化所致。

2.3.2 复合材料的韧化机制

2.3.2.1 细晶韧化

由图 2 可知,添加的 Si₃N₄颗粒和 SiC 晶须对基体 MoSi₂ 晶粒在热压过程中的长大有明显的阻碍作用,复合材料的晶粒变细小。细化晶粒能够提高材料的断裂韧性,是由于细化晶粒,可增大相邻晶粒之间的约束,使晶粒内的形变立即传递给周围相邻的晶粒 而产生均匀形变,不容易产生应力集中,不容易形成裂纹。另外,相对于两侧的晶粒而言,晶界是点阵畸变区,起着抑制裂纹扩展的势垒作用,晶粒越细,裂纹失稳扩展所消耗的能量越大。判别裂纹是否失稳扩展的判别式为^[17]:

$$(\sigma_0 d^{1/2} + k_y) k'_y \ge \beta \mu \gamma \tag{3}$$

式中: σ₀为位错的摩擦阻力; d为晶粒度; k_y, k_y, β 为常数; μ为切变模量; γ为比表面积。由式(3)可知, 减小晶粒尺寸,可使裂纹不容易发生失稳扩展。因此, Si₃N₄颗粒和 SiC 晶须的加入,可使 MoSi₂材料的晶粒 细化、阻碍裂纹的形成和失稳扩展,从而有效地提高 材料的断裂韧性。

由图 3 可见,添加强化相后,MoSi₂的晶粒明显 细化,断裂模式由纯 MoSi₂材料的解理断裂逐渐过渡 为复合材料的解理-沿晶断裂,断裂起伏面加大,解理 断裂的比例减小,裂纹扩展阻力即断裂韧性 K_{IC} 明显 提高。

2.3.2.2 裂纹偏转与分支增韧

通过扫描电子显微镜对纯 MoSi₂ 与 MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料的裂纹扩展途径进行 分析,结果如图4所示。

由图 4 可见,压痕裂纹的扩展路径在复合材料与 基体材料中迥然不同。同样的载荷下,纯 MoSi₂中压 痕周围的裂纹非常多,而且较平直,裂纹扩展得很长,

图 4 裂纹的扩展途径 Fig.4 Propagation path of crack: (a) MoSi₂ and (b) MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)

以穿晶裂纹为主(图 4a)。从图 4b 可见,复合材料只在 压痕角尖端部位产生裂纹,而且发生偏转,裂纹扩展 较短,这是由于 SiC 晶须和 Si₃N₄粒子在晶界处的阻 挡作用,使裂纹遇到 SiC 晶须和 Si₃N₄颗粒时发生偏 转和分叉,使裂纹沿晶界扩展受阻并且更加曲折,裂 纹以穿晶和沿晶裂纹混合组成。一般认为裂纹绕过颗 粒比穿过颗粒韧化效果强^[18]。然而当裂纹遇到颗粒 时,是绕过还是穿过,这与颗粒在基体中的分布,颗 粒间距、形状大小,有无缺陷,基体的受力状态,颗 粒与基体的界面状态,以及裂纹扩展的方向与颗粒排 列的角度等许多因素有关。

总之,裂纹的偏转与分支是 MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料具有较好的断裂韧性的另一个重要原因。

2.3.2.3 裂纹微桥接增韧

在 MoSi₂材料中添加一定的 SiC 晶须和 Si₃N₄颗 粒后,在变形过程中,裂纹扩展不仅会发生偏转、分 支和弯曲(见图 4b),还会发生裂纹的微桥接(图 5)。 这是由于在强化相粒子与 MoSi₂基体间存在着弹性模 量和膨胀系数的差异,造成材料内部产生径向张应力 和切向压应力,这种应力的存在和外力相互作用,使 裂纹发生偏转、分支和微桥接,从而提高材料的抗断 裂能力、增加韧性。

综上所述,添加 SiC 晶须和 Si₃N₄颗粒的复合材 料的增韧机制主要为晶粒细化增韧、裂纹的偏转分叉 和微桥接增韧。

- 图 5 MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料中的裂纹微桥接 Fig.5 Crack micro-bridging in MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)
 - composite

3 结 论

 MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料的抗弯 强度、断裂韧度和维氏硬度分别为 427 MPa、10.4 MPa·m^{1/2}和 11.4 MPa,分别为纯 MoSi₂抗弯强度、断 裂韧度和维氏硬度的 2 倍、3.4 倍和 1.4 倍,SiC 晶须 和 Si₃N₄颗粒对 MoSi₂具有良好的协同强韧化效果。

2) MoSi₂-20%Si₃N_{4(p)}-20%SiC_(w)复合材料的强化 机制为细晶强化和弥散强化; 韧化机制为细晶韧化、 裂纹偏转与分支和微桥接韧化。

参考文献 References

- [1] Vasudevan A K et al. Mater Sci & Eng[J], 1992, A115: 1
- [2] Zhou Hongming(周宏明) et al. Materials Review(材料导报) [J], 2006, 20(11): 404

- [3] Mohan G H. Mater Sci & Eng[J], 1999, A261: 24
- [4] Zhang Xiaoli(张小立) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2003, 32(12): 1037
- [5] Ma Qin(马勤) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2003, 32(3): 170
- [6] Lan Sun et al. Journal of the European Ceramic Society[J], 2002, 22: 791
- [7] Houan Zhang et al. Mater Sci & Eng[J], 2003, A345: 118
- [8] Inui H et al. Mater Sci & Eng[J], 2001, A34: 31
- [9] Qin Ma et al. Composites Science and Technology[J], 2001, 61: 963
- [10] Newman A et al. Mater Sci & Eng[J], 1999, A261: 252
- [11] Yamada K et al. Mater Sci & Eng[J], 1999, A261: 270
- [12] Robert W K et al. Mater Sci & Eng[J], 1999, A261: 300
- [13] Zhou Hongming(周宏明) et al. Materials for Mechanical Engineering(机械工程材料)[J], 2008, 32(3): 23
- [14] Meng Mianwu(蒙冕武) et al. Rare Metal Materials and Engineering(稀有金属材料与工程) [J], 2006, 35(8): 1235
- [15] Wang Xuecheng(王学成) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学报) [J], 1995, 5(2): 103
- [16] Wang Gang et al. Materials Letters[J], 2004, 58: 308
- [17] Xiao Jimei(肖纪美). The Toughness and Toughening of Metal(金属的韧性与韧化)[M]. Shanghai: Shanghai Science and Technology Press, 1983: 156
- [18] Ma Qin(马勤) et al. Rare Metal Materials and Engineering (稀有金属材料与工程) [J], 1996, 25(2): 30

Strengthening and Toughening Effect and Its Mechanism for Si₃N_{4(p)}/SiC_(w)-MoSi₂ Composite

Zhou Hongming, Yi Danqing, Liu Gongqi, Xiao Lairong (Central South University, Changsha 410083, China)

Abstract: The structure, morphology, hardness, breaking toughness, strengthening and toughening mechanism of $MoSi_2-Si_3N_{4(p)}/SiC_{(w)}$ composites were investigated by means of XRD, SEM, Vichers hardness tester and electrical omnipotence material tester in this paper. It is shown that the SiC whiskers and Si₃N₄ particles have the coordinated strengthening and toughening effect on MoSi₂, the bending strength and room temperature fracture toughness of MoSi₂-20 vol% Si₃N_{4(p)}-20 vol%SiC_(w) composite are 427 MPa and 10.4 MPa·m^{1/2}, respectively, which is higher than that of MoSi₂ strengthened and toughened by SiC whiskers or Si₃N₄ particles. The strengthening mechanism of MoSi₂-Si₃N_{4(p)}/SiC_(w) composites are the fine grains and dispersion strengthening, and the toughening mechanism are the fine grain toughening and the crack deflection and the micro bridge join toughening.

Key words: MoSi₂; composite; Si₃N₄ particle; SiC whisker; strengthening-toughening mechanism

Biography: Zhou Hongming, Post Doctor, Associate Professor, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China, Tel: 0086-731-8877173