IT-SOFC 复合阳极材料 CDC-LSCMCo 的制备及性能

张徐民¹,陈秀华¹,项金钟¹,马文会²,于 i^{2}

(1. 云南大学,云南 昆明 650091)(2. 昆明理工大学 真空冶金国家工程实验室,云南 昆明 650093)

摘 要:采用甘氨酸-硝酸盐法(GNP法)一次性合成固体氧化物燃料电池复合阳极材料 Ce_{0.8}Ca_{0.2}O₂-La_{0.7}Sr_{0.3}Cr_{0.5}Mn_{0.5-x}Co_xO_{3- $\delta}(CDC-LSCMCo)。XRD、SEM和EDS分析结果表明:1350 下烧结5h能够得$ $到单一萤石-钙钛矿结构且粒度较小(1 <math>\mu$ m 左右)的复合阳极粉体。电导率的测试研究发现,温度大于750 时,电导率 随Co含量的增加而增大。800 时,CDC-LSCMCo_{0.15}分别在空气与氢气气氛下的电导率分别为10.5和0.7 S·cm⁻¹。SEM 和XRD分析表明:CDC-LSCMCo与La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3- δ}电解质材料有很好的热与化学相容性,是一种应用前景良好的IT-SOFC 阳极材料。</sub>

关键字:GNP 法;CDC-LSCMCo;复合阳极;电导率;IT-SOFC

中图法分类号:TM911.4 文献标识码:A 文章编号:1002-185X(2010)01-0177-05

固体氧化物燃料电池(SOFC)以高电能转换率、高 燃料利用率、宽燃料选择性与环境友好而在诸燃料电 池中脱颖而出。然而,这些优点的实现,性能优越的 阳极是不可或缺的。寻找一种卓越性能的阳极材料是 一项富有挑战性的工作,阳极材料需要具有较高的电 子电导,对各种燃料具有良好的催化性能,另外还需 要一定的多孔性与离子电导,以拓宽 SOFC 反应三相 界,以及和电池其它部件有良好的热与化学相容性。 传统 Ni 基阳极是一种电性能优越的阳极材料。在纯 H2作为燃料时, Ni 对 H-H 键的断裂与氢原子的吸收 具有良好的催化效果,但是当碳氢化合物气体作为燃料 时, Ni 很容易催化生成 C-C 键, 从而产生积碳现象^[1]。 由于燃料气体一般纯度不高,混有含硫气体,Ni基阳 极就容易生成 NiS 而失效^[2]。La_{1-x}Sr_xGa_{1-y}Mg_yO_{3-d} (LSGM)是一种目前运用广泛的 SOFC 电解质材料,然 而当 Ni 基材料与 LSGM 分别作为阳极与电解质时, 在较高的电池制备温度下,由于 Ni 元素的迁移与 LSGM 生成杂相,导致电解质性能下降^[3,4]。

鉴于 Ni 基阳极的诸多缺点,目前取而代之的主要 有 Cu 基与钙钛矿阳极材料。Cu 是一种良导体,具有 很高的电子电导。Cu 对 C-C 键的生成没有催化作用, 很好的解决了积碳现象^[5-7],但同时 Cu 在催化 C-H 键 与 C-C 键的断裂方面不是很理想,为了提高其催化性 能,一般将 CeO2 基材料作为氧化反应催化剂与 Cu 复 合^[8,9],这里的 CeO₂ 基材料有(Sm,Ce)O_{2-d}(SDC)、 (Ca,Ce)O_{2-d}(CDC)与(Gd,Ce)O_{2-d}(GDC)。钙钛矿阳极以 LaCrO₃ 材料为例,目前也得到了广泛的研究。当在 LaCrO₃的 A 位掺杂碱土元素(Mg、Ca、Sr)时,材料的 电子电导将被提高 2 个数量级^[7];在 B 位掺杂过渡元 素 (Cu、Mn、Fe、Ti、Ni、V), 可显著提高材料的催 化活性与离子电导^[10,11]。为了进一步提高材料的电化 学性能,将 CeO2基材料对掺杂的 LaCrO3材料进行复 合,降低了还原气氛下此复合材料的极化电阻,并且 对 CH4 氧化催化性能更强^[12],因此 CeO2 基材料与掺 杂的 LaCrO3 材料的复合材料适用于 SOFC 多种燃料 体系,尤其适用于碳氢化合物燃料气体,基本解决了 硫容忍性差和积碳缺陷。然而, La0.75Sr0.25Cr0.5-Mn_{0.5}O_{3-δ} (LSCM)作为一种 p 型导体,氧分压 p_{O2}>10⁻⁵ Pa时,电导率可达38 S/cm,随着氧分压的减小,电 导率锐减,在 5%H2 气氛下(p 0,≈10⁻¹⁶ Pa), 电导率只为 $1.5 \text{ S/cm}^{[13]}$

除了电化学性能,材料的物理性能也是一个必须

收稿日期:2009-01-15

基金项目:国家自然科学基金项目(50204007); 云南省中青年学术带头人后备人才项目(2005PY01-33); 教育部新世纪优秀人才支持计划 (NCET-07-0387)

作者简介:张徐民,男,1982 年生,硕士生,云南大学物理科学技术学院,云南 昆明 650091;通讯作者:马文会, E-mail: mwhui@kmust.edu.cn

重视的方面,其中最重要的一项就是材料的热膨胀性能。具有较高氧离子电导的电解质 LSGM,它的平均热膨胀系数在 12×10^{-6} K⁻¹ 左右^[14,15],与 La_{0.75}Sr_{0.25}Cr_{0.5}-Mn_{0.5}O_{3- δ}的热膨胀系数(温度在 100-700 时为 10.8×10^{-6} K⁻¹,1000~1300 时为 14.1×10^{-6} K⁻¹)^[16]有一定的差距,在 1200 左右电池制备温度下,LSCM 的热膨胀系数相对 LSGM 稍大。为了使它们能同时运用于电池中,LSCM 阳极中复合一定比例的 CeO₂基材料(平均热膨胀系数相匹配。

实验室采用甘氨酸-硝酸盐法(GNP法)一次性合 成了复合阳极材料 CDC-LSCMCo,而且得到了较纯的 萤石-钙钛矿相。CDC 的复合改善了材料的热膨胀与 电化学性能,其中 CDC 与 LSCMCo 的摩尔比为 3:7, 鉴于 Ma Xueju 等人^[18]制备的 CDC-LSCM 复合材料, 二者比例为 3:7 时,材料电导率最高。Co 元素的掺杂 是为了提高材料的电子电导,而解决了之前提到的在 还原气氛下 LSCM 材料电导率较低的缺陷。但是 Co 的量不宜过高,因为掺杂 Co 不仅提高材料的电导率, 同时也增大了材料的热膨胀系数^[19]。

1 实 验

采用 GNP 法^[20]一次性合成了 CDC-LSCMCo 材料 (其中 CDC:LSCM=3:7; *x*=0.05, 0.1, 0.15), 得到前躯 体材料。

将前躯体材料分别置于马弗炉中 800、1100、1350 和 1400 空气气氛烧结 5 h,所得试样然后分别进行 XRD 物相分析(日本理学 D/MAX-3D 型 X 射线衍射 仪)、扫描电镜(SEM, Philips, XL30ESEM-TMP)形貌 分析与 X 射线能谱(EDS, EDAX, PHOENIX)分析。

将烧结好的粉体材料在 120 MPa 压强下压制成 Φ13 mm×2 mm 的片, 然后在 1350 下烧结 20 h, 采 用直流四探针法测量材料在氧化(空气)与还原(氢气) 气氛下的电导率。氧化与还原气氛下测量温度范围分 .每 50 测量 1 个数据。 别为 250-800 与 500-800 将在 1350 下烧结 5 h 的 CDC-LSCMCo₀₁₅ 粉末分别 与电解质材料 YSZ、LSGM 混合,充分研磨均匀,然 后在 1200 烧结 8 h,将烧结好的粉末进行 XRD 物 相分析,检测是否有杂相生成。将混合均匀的 CDC-LSCMCo_{0.15} 粉末与一定比例的造孔剂在 120 MPa 压强下压制成 Φ 13 mm×2 mm 的阳极片, 然后利 用溶剂、粘结剂、调节剂调制好的 LSGM 电解质浆料 采用匀胶机离心镀膜法在阳极片上镀上电解质层, 1200 下共烧结 5 h, 所得样品用 SEM 测试, 观测阳 极与电解质之间的热匹配性。

2 结果与分析

2.1 材料的性能表征

CDC-LSCMCo_{0.1} 前躯体粉末在不同温度下烧结 所得样品的 XRD 谱图见图 1。由图可知,在 800 的 烧结温度下,就有钙钛矿相生成,但杂相较多,而且 此温度下没有出现萤石结构特征峰,说明 800 烧结 温度太低。随着温度的升高,杂相越来越少,在 1100

下还存在少量杂相。1350 与 1400 下的杂相基本 消失,说明当烧结温度高于 1350 时就能得到较纯的 萤石-钙钛矿相。由于烧结温度过高,晶粒生长较大。

图 2 是 1350 下烧结的样品的 SEM 照片。可见 其中晶粒比较圆整、均匀,颗粒较小,粒度在 1 μm 左 右。说明 1350 下的晶粒生长良好,为最佳烧结温度。

图 3 为 1350 烧结样品的 EDS 能谱图。由图可 知,材料仅含有 Ce、Ca、La、Sr、Cr、Mn、Co 和 O 元素,不存在其它任何杂质元素,各元素的 EDS 成分 分析见表 1。表 1 中还列出了各金属元素的实际摩尔 比与理论摩尔比,发现它们差异甚微,说明基本得到 了理想的阳极材料。

- 图 1 不同温度下烧结的 CDC-LSCMCool 样品 XRD 图谱
- Fig.1 XRD patterns of CDC-LSCMCo_{0.1} specimen after sintering at different temperatures

图 2 1350 下烧结 5 h 得到 CDC-LSCMCo_{0.1}样品的 SEM 照片 Fig.2 SEM images of CDC-LSCMCo_{0.1} specimen sintered at 1350 for 5 h

- 图 3 CDC-LSCMCo_{0.1}材料在 1350 下烧结 5 h 的能谱图
- Fig.3 EDS spectrum of CDC-LSCMCo_{0.1} specimen sintered at 1350 for 5 h $\,$

表 1 CDC-LSCMCo_{0.1}中各元素的含量 Table 1 Elements and their percentages in CDC-LSCMCo_{0.1}

Element	ω /%	at%	Mole ratio	Theoretical mole ratio
Ca	1.14	1.42	0.054	0.06
Ce	17.79	6.35	0.24	0.24
La	34.47	12.42	0.47	0.49
Sr	9.86	5.64	0.21	0.21
Cr	10.03	9.66	0.36	0.35
Mn	6.69	6.10	0.23	0.28
Co	1.84	1.57	0.06	0.07
0	18.17	56.85	2.44	-

2.2 电导率

图 4 给出了不同 Co 掺杂量对材料在空气、氢气 气氛下 $\ln \sigma T$ 与 1000/T 关系。可以看出,空气中材料 的电导率随温度的升高而增加,基本呈线性关系,符 合小极化子导电机制^[21]。空气中,600 之前 CDC-LSCMCo₀₁ 电导率最高, CDC-LSCMCo₀₁₅ 最小; 时, CDC-LSCMCo_{0.15} 电导率迅速增 温度大于 600 加,800 时 CDC-LSCMCo_{0.15} 电导率最大,达 10.5 S/cm (lnσT=9.33)。当温度达到 750 后,材料电导率 随 Co 的掺杂量的增加而增大。CDC-LSCMCoo1 在 800 时的电导率为 10.35 S/cm (lnσT=9.31), 相比 He Enguan^[22]等人制备的 LSCMCool(在 850 的电导率 为 10.2 S/cm)和 Ma Xueju 等人^[18]制备的 CDC-LSCM (850 时的电导率为 6.49 S/cm)有较大的提高。当空 气变为氢气气氛时,电导率大幅度降低,在800 时, CDC-LSCMC0015的电导率为 0.7 S/cm (ln oT=6.62),这 是材料中高价金属离子被还原的缘故。但是相比 LSCMCo^[22](氢气气氛, 850 下为 0.42 S/cm)有了很 大的提高。因此, Co^[19]的掺杂与 CDC 的复合能够大 大改进材料在还原气氛下的电化学性能。

- 图 4 CDC-LSCMCo 系列样品在不同气氛中的电导率与温度 的变化关系
- Fig.4 Temperature dependence of CDC-LSCMCo samples on the electrical conductivity in different atmospheres

2.3 复合材料与电解质材料的相容性

图 5 为 CDC-LSCMCo_{0.15} 与电解质 YSZ、 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3- δ}(LSGM)在 1200 烧结后的 XRD 图谱。复合材料与 YSZ 的谱图中出现较多杂相, 主要有(Ce, Zr)O_{2-x}高电阻固溶体与 Sr₂ZrO₄、La₂Zr₂O₇ 绝缘化合物等^[23,24],这些杂相的产生大大提高了电池 的欧姆电阻,严重影响电池性能。因此,材料与 YSZ 电解质在 1200 的电池制作温度下化学相容性差,不 适合共同使用于电池中,除非在较低温度下制备电池 或使用隔离层。

复合材料与 LSGM 的谱图中尚未发现杂相存在, 说明 1200 的烧结温度下,材料与 LSGM 的化学相 容性很好。图 6a、6b 分别是 CDC-LSCMCo_{0.15} 阳极支 撑 LSGM 电解质层的截面与表面 SEM 照片。图 6a 中 从左到右依次是多孔阳极基底、阳极-电解质过渡层和 致密电解质层,LSGM 与阳极基底接触紧密、附着良

图 5 CDC-LSCMCo_{0.15} 材料与 YSZ、LSGM 电解质在 1200 烧结后的 XRD 图谱

图 6 CDC-LSCMCo_{0.15} 阳极支撑 LSGM 电解质的 SEM 照片

Fig.6 SEM images of CDC-LSCMCo_{0.15} anode supported LSGM electrolyte: (a) cross-section and (b) surface of LSGM layer

好,没有出现因热膨胀系数不匹配而起翘、脱落等现 象。图 6b 中 LSGM 表面平整、无裂痕。说明材料中 CDC 的加入,改善了阳极的热膨胀系数。 CDC-LSCMCo与LSGM之间的热与化学相容性较好, 两者可同时应用于燃料电池中。

3 结 论

1) 采用 GNP 法可以一次性合成 CDC-LSCMCo 复合阳极材料。

 2) 前躯体粉末在 1350 下烧结 5 h 能得到单一 萤石-钙钛矿相、粒度在 1 μm 左右的粉末。

3) Co 元素的掺杂分别在氧化、还原气氛下提高了 材料的电导率。温度大于 600 , CDC-LSCMCo_{0.15} 电导率迅速增加,当温度达到 750 时电导率随 Co 的掺杂量的增加而增大。

4) CDC 的复合提高了材料在还原气氛下的电导 率。800 下 CDC-LSCMCo_{0.15} 分别在空气与氢气气 氛中的电导率为 10.5 和 0.7 S/cm, 较 LSCMCo 与 CDC-LSCM 材料电导率有很大的提高。

5) CDC-LSCMCo 阳极材料与 YSZ 电解质化学相 容性较差,生成杂相;与 LSGM 电解质材料的热与化 学相容性优越。

参考文献 References

- [1] Atkinson A, Barnett S, Gorte R et al. Nature Mater[J], 2004, 3:17
- [2] Matsuzaki Y, Yasuta I. Solid State Ionics[J], 2000, 132(3-4):
 261
- [3] Ishihara T, Shibayama T, Nishiguchi H et al. J Mater Sci[J],

2001, 36: 1125

- [4] Kim K N, Kim B K, Son J W et al. Solid State Ionics[J], 2006, 177(19-25): 2155
- [5] Kim H, Lu C, Worrell W L et al. J Electrochem Soc[J], 2002, 149(3): A247
- [6] Lu C, Worrell W L, Wang C et al. Solid State Ionics[J], 2002, 152: 393
- [7] Lu C, Worrell W L, Gorte R J et al. J Electrochem Soc[J], 2003, 150(3): A354
- [8] Park S, Craciun R, Vohs J M et al. J Electrochem Soc[J], 1999, 146(10): 3603
- [9] Gorte R J, Park S, Vohs J M et al. Adv Mater[J], 2000, 12(19): 1465
- [10] Joseph Sfeir, Philippe A Buffat, Pedro Möckli et al. Journal of Catalysis[J], 2001, 202(2): 229
- [11] Sauvet A L, Irvine J T S. Solid State Ionics[J], 2004, 167(1-2):
- [12] Jiang S P, Chen X J, Chan S H et al. J Electrochem Soc[J], 2006, 153(5): A850
- [13] Tao S, Irvine J T S. J Electrochem Soc[J], 2004, 151(2): A252
- [14] Stevenson J W, Armstrong T R, McCready D E et al. J Electrochem Soc[J], 1997, 144(10): 3613
- [15] Ishihara T, Honda M, Shibayama T et al. J Electrochem Soc[J], 1998, 145(9): 3177
- [16] Kharton V V, Tsipis E V, Marozau I P et al. Solid State Ionics[J], 2007, 178(1-2): 101
- [17] Steele B C H. Solid State Ionics[J], 1995, 75: 157
- [18] Ma Xueju, Chen Xiuhua, Ma Wenhui et al. Journal of Rare Earths[J], 2007, 25(S): 391
- [19] Zhu W Z, Deevi S C. Materials Science and Engineering A[J], 2003, 348(1-2): 227
- [20] Chick L A, Pederson L R, Maupin G D et al. Materials Letters[J], 1990, 10(1-2): 6
- [21] Tai L W, Nasrallah M M, Anderson H U et al. Solid State Ionics[J], 1995, 76(3-4): 259
- [22] He Enquan, Ma Wenhui, Yu Jie et al. Journal of Rare Earths[J], 2007, 25(S): 382
- [23] Xinge Zhang, Mark Robertson, Cyrille Decès-Petit et al. J Power Sources[J], 2008, 175(2): 800
- [24] Minh N Q. J Am Ceram Soc[J], 1993, 76: 563

Preparation and Properties of CDC-LSCMCo Composite Anodes for IT-SOFC

Zhang Xumin¹, Chen Xiuhua¹, Xiang Jinzhong¹, Ma Wenhui², Yu Jie²

(1. Yunnan University, Kunming 650091, China)

(2. National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China)

Abstract: IT-SOFC composite anode material $Ce_{0.8}Ca_{0.2}O_2-La_{0.7}Sr_{0.3}Cr_{0.5}Mn_{0.5-x}Co_xO_{3.\delta}$ (CDC-LSCMCo) was synthesized in one-step by glycine nitrate process (GNP). The results from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) indicate that the composite anode powder with single fluorite-perovskite phase and small grain size (about 1 µm) was obtained after sintering the predecessor at 1350 °C for 5 h. Conductivity testing show that the conductivity of CDC-LSCMCo increases with the Co content increasing when the temperature is above 750 °C; while at 800 °C the conductivity is 10.5 S·cm⁻¹ and 0.7 S·cm⁻¹ in air and H₂ atmosphere, respectively. Good chemical-thermal compatibility between CDC-LSCMCo and La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3- $\delta}$} (LSGM) was confirmed via XRD and SEM. CDC-LSCMCo is a promising anode material of SOFC for its excellent properties at intermediate temperature.

Key words: glycine nitrate process (GNP); CDC-LSCMCo; composite anode; conductivity; IT-SOFC

Corresponding author: Zhang Xumin, Candidate for Master, Faculty of Physical Science and Technology, Yunnan University, Kunmin 650091, P. R. China; Ma Wenhui, E-mail: mwhui@kmust.edu.cn