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Abstract: Taking 6061-T6 aluminum alloy cold-rolled sheet as the research object, the plastic deformation behavior of 6061 

aluminum alloy at different heat treatment temperatures (500, 530, 560 and 590 °C) was analyzed through uniaxial tensile test, 

metallographic test and microhardness test. Combined with experimental data and BP, GA-BP and PSO-BP neural networks, the 

constitutive models of this material under different heat treatment temperature conditions were constructed. The results show that BP, 

GA-BP and PSO-BP neural network models can better fit the flow behavior of 6061 aluminum alloy under different heat treatment 

temperature conditions, but PSO-BP neural network model has higher prediction accuracy and good performance in predicting the 

flow stress of 6061 aluminum alloy, and its average absolute error (MAE), average relative error (AARE) and the correlation 

coefficient (R

2

) are 1.89, 1.56% and 0.9965, respectively. 
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Aluminum alloy is one of the most commonly used 

materials in the fields of machinery, electronics, rail transit, 

aerospace, etc, due to its lightweight, high strength, and good 

formability

[1]

. Therefore, it is important to assess all funda- 

mental properties of this material, including the mechanical 

feature of plastic deformation. The process of plastic 

deformation in metals under the effect of external strain 

factors is influenced by the non-linear relationship between 

strain rate, temperature, and flow stress. The development of a 

precise constitutive equation that can effectively correlate 

these properties and describe the plastic deformation behavior 

in materials has been a subject for many scientific researchers. 

Abd El-Aty et al

[2]

 and Wang et al

[3]

 proposed a new 

constitutive equation of AA2060-T8 aluminum alloy and 

7050-T7451 aluminum alloy, respectively, based on the 

Johnson-Cook model and the coupling of temperature, strain, 

and strain rate effects. Rasaee et al

[4]

 also established a 

constitutive equation based on the Johnson-Cook model of 

Al2024, that accounts for the effects of hardening and 

softening behavior, as well as the correlation between different 

parameters. Xiang et al

[5]

 investigated the high temperature 

deformation behavior of Al-Mg-Si-La alloy and the strain 

factor was included in the constitutive model based on the 

Arrhenius equation and Z parameter. Using this model, the 

relationship between the material constants (Q, lnA, n, and α) 

and true strain can be expressed by a 6th-order polynomial 

function, achieving accurate estimation of the flow stress in 

Al-Mg-Si-La alloy. Liu et al

[6]

 proposed an improved 

Arrhenius-type constitutive model that well predicts the 

increase in flow stress of 2219 Al alloy with decreasing the 

temperature and/or increasing the strain rate. Haghdadi et al

[7]

 

established a constitutive model to calculate the flow stress of 

A356 aluminum alloy based on the Arrhenius-type equation 

and Zener-Hollomon parameter. Chamanfar

[8]

 built a 

constitutive equation of a newly developed and homogenized 

AA6099 alloy, by which the relation between flow stress and 

deformation temperature and strain rate was derived based on 

a power-law empirical model, and it shows that the main flow 
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softening mechanism of the investigated alloy is dynamic 

recovery. Chen et al

[9] 

developed a new constitutive model 

considering the coupling effects of strain, strain rate, and 

temperature. Comparison of this model with J-C, KHL, ERK, 

and KL models shows that the flow stress predictions of the 

proposed model exhibit greater agreement with the 

experimental results over a wide range of temperature and 

strain rate. Wang et al

[10]

 developed three phenomenological 

models, based on Johnson-Cook (J-C), Fields-Backofen (F-B), 

and Arrhenius-type models, to predict flow stress behavior of 

spray-formed 7055 aluminum alloy during compression. 

Among the three models, the modified J-C and F-B models 

cannot predict the hot deformation behavior of 7055 

aluminum alloy well due to the large deviation in line 

regression fitting, while the modified Arrhenius-type model 

yields the best results, as it combines the effects of strain rate 

and temperature. He et al

[11]

 proposed a constitutive model that 

accounts for local strain rate evolution based on the 

Fields-Backofen (F-B) model and it was used to predict the 

flow stress behavior of 2024 aluminum alloy. Compared to the 

original F-B model, the predictions of proposed equation are 

more similar to the experimental results. Liu et al

[12]

 

established the constitutive model of homogeneous Al-Mg- 

Si-Mn-Cr alloy based on the modified J-C, Zerilli- Armstrong, 

and strain-compensated Arrhenius models. Among the three 

models, the strain-compensated Arrhenius model shows the 

best predictive accuracy, especially at low strain rates. Wang 

et al

[13]

 used the Laasraoui-Jonas model, modified by 

introducing a term that accounts for flow softening induced by 

dynamic grain boundary migration, to predict the flow stress 

characteristics of Al-Mg-Si alloy. Li et al

[14]

 developed a 

phenomenological constitutive model of AA2219 by 

considering the negative-to-positive SRS and the coupling 

effects of strain and temperature. Lin et al

[15]

 proposed a 

constitutive model of Al-Zn-Mg-Cu alloy based on dislocation 

density using an iterative procedure to describe the flow 

behavior under time-variant deformation conditions.  

The above-mentioned constitutive models mainly use 

mathematical methods to characterize the flow stress 

characteristics and deformation mechanism of materials in the 

process of plastic deformation. Complicated mathematical 

expressions are prone to errors in the process of calculation, 

such as long calculation time and inconvenient application. In 

order to improve the prediction accuracy of the constitutive 

model, it is necessary to modify the influencing factors of 

flow stress due to different processing parameters and 

deformation mechanism. Compared with the traditional 

constitutive equation, neural network theory is more mature. It 

has strong learning ability, generalization, fault tolerance and 

nonlinear mapping ability, and can approach any continuous 

function, and artificial neural network has been used in much 

research to establish the stress-strain constitutive model. Xu

[16]

 

and Sheikh

[17]

 et al used BP algorithm to establish a 

constitutive relationship model of Q345 steel alloy and 

AA5083 aluminum alloy, respectively. The established models 

can predict the mechanical properties of the investigated 

alloys at different temperatures, as well as show the complex 

non-linear relationship between ultimate performance and 

heating temperature. Zhang

[18]

 and Wan

[19]

 et al developed the 

constitutive models of Al6181H18 and Ti-2.7Cu alloy, 

respectively, based on the BP and ATPSO-BP models. The 

flow stress characteristics of 7075, 6A02, and 5754 aluminum 

alloys were studied by Quan

[20]

, Han

 [21]

, and Huang 

[22]

 et al, 

respectively, using isothermal compressive tests. For each 

material, a constitutive model was established based on the 

Arrhenius-type equation or BP algorithm. The obtained results 

show that the BP neural network model exhibits excellent 

predictive capability in the complex flow behavior of 

as-extruded 7075 aluminum alloy and thus has great potential 

in applications involving hot deformation processes. Similar 

to the 7075 aluminum alloy, the BP neural network model 

shows enhanced performance in terms of flow stress 

prediction for 6A02 alloy, compared to the Arrhenius-type 

model. Finally, the GA-BP neural network model yields the 

greatest predictive efficiency for the 5754 aluminum alloy 

throughout the entire deformation process.  

Base on the above research, it is concluded that BP and 

optimized BP neural networks can be used to predict the 

complex flow behavior of metal materials in the process of 

plastic deformation. BP neural network is better than the 

traditional constitutive method in predicting performance, and 

can better characterize the non-linear mapping relationship 

between flow stress and deformation temperature, strain rate 

and strain. However, BP neural network has some inherent 

flaws, such as the need to learn a large number of sample data to 

ensure the prediction accuracy, the slow learning speed, and 

tendency of falling into local minimum value and network 

instability

[23]

. In addition, the initial weights and thresholds of 

randomly selected neurons have great influence on the stability 

and prediction accuracy of the network. Therefore, it is 

necessary to optimize the BP neural network to obtain a more 

accurate and reliable network model and better prediction 

performance. In this study, we assessed the flow stress 

properties of 6061 aluminum alloy, which is a thermally 

reinforced Al-Mg-Si alloy characterized by lightweight, high 

strength, good formability and has a wide range of applications. 

In order to study the effect of different heat treatment 

temperatures on the plasticity and flow behavior of the 

investigated alloy, the commercial 6061-T6 aluminum alloy 

sheet was used as the research object and the flow stress 

characteristics of 6061-T6 aluminum alloy after reheating at 

different heating temperatures were studied. In addition, the 

flow stress of 6061 aluminum alloy under various heat 

treatment conditions was theoretically predicted by constitutive 

models, which were developed based on BP, GA-BP and 

PSO-BP neural network models, and the prediction capability of 
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these three models was analyzed by statistical analysis methods. 

1  Experiment 

The elemental composition of the 6061-T6 aluminum alloy 

sheets used in this study was 1.3 wt% Si, 0.26 wt% Mg, 0.5 

wt% Fe, 0.5 wt% Cu, 0.2 wt% Mn, 0.1 wt% Cr, 0.2 wt% Zn, 

0.15 wt% Ti and balance Al. The original metallographic 

structure of 6061-T6 aluminum alloy is shown in Fig.1. 

It can be seen from Fig.1, the 6061-T6 aluminum alloy has 

an obvious recrystallization process. Due to the elimination of 

the fiber structure caused by the rolling deformation of the 

plate, equiaxed crystals form with large individual size 

differences, and there are a large number of fine second 

phases inside the grains, with high dispersion degree. These 

dispersed second phases will increase the resistance of the 

dislocation motion of the crystal grains, leading to the increase 

of the strength and hardness of 6061 aluminum alloy and 

deterioration in plastic properties. 

The existing research results show that the solidus and 

liquidus temperature of 6061 aluminum alloy are 582 and 652 

°C

[24,25]

, respectively, and the dynamic recrystallization 

phenomenon is obvious when the heating temperature is 

300~500 °C

 [26]

. Therefore, in order to obtain the influence of 

different heat treatment temperatures on the flow stress of 

6061 aluminum alloy, a single variable control method was 

used in the research process. Under the same holding time and 

cooling mode, the van-type resistance heating furnace 

(SX2-4-10) was used to heat treat the aluminum alloy samples 

and the heating temperature was designed as 500, 530, 560 

and 590 °C. Before uniaxial tensile tests, 6061-T6 aluminum 

alloy sheets were heat treated for 2 h in a van-type resistance 

heating furnace (SX2-4-10) according to the temperature plan 

displayed in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1  Original metallographic structure of 6061-T6 aluminum alloy 

 

Table 1  Heat treatment of 6061-T6 aluminum alloy samples 

Process No. Heat treatment 

1 500 °C for 2 h and air cooling 

2 530 °C for 2 h and air cooling 

3 560 °C for 2 h and air cooling 

4 590 °C for 2 h and air cooling 

The effects of different heat treatment temperatures on the 

flow stress and hardness of 6061 aluminum alloy were 

obtained by CMT5105 electronic universal testing machine 

and 4P2MVA Vickers hardness tester. 

The microstructure of 6061 aluminum alloy at different heat 

treatment temperatures was observed by XJP-6A optical 

microscope. Before observation, 6061 sheet was cut into 5 

mm�3 mm�1 mm metallographic samples by metal shears, 

and then the samples were cold mounted by acrylic powder 

and curing agent. 6061 aluminum alloy specimens were pre- 

ground with 800~2500 sandpaper and polished mechanically. 

Then chemical etching was carried out with Keller (1 mL 

HF+1.5 mL HCL+2.5 mL HNO

3

+95 mL H

2

O) reagent for 

16~100 s, and then washed with alcohol and dried. Finally, the 

metallographic structures were compared and analyzed by 

metallographic microscope. 

2  Results and Discussion 

2.1  True stress-strain curves 

The true stress-strain curves of 6061 aluminum alloy at 

different heat treatment temperatures were measured by 

uniaxial tensile test, as shown in Fig.2. 

The experimental results shown in Fig.2 indicate that 

heating temperature during heat treatment, strain and strain 

rate during deformation have a great influence on the flow 

stress behavior of 6061 aluminum alloy. Within a specific 

temperature range, flow stress increases with increasing the 

strain rate, showing an obvious strain rate hardening effect. 

Under the same heat treatment and strain rate conditions, the 

flow stress of 6061 aluminum alloy increases with the increase 

of plastic strain, and the flow stress curves are relatively 

smooth during the initial tensile stage. However, as the plastic 

deformation increases, the subsequent flow stress curves have 

obvious serration. This indicates that, under uniaxial tensile 

conditions, the plastic deformation instability and PLC effect 

are caused by the interaction between dynamic strain aging 

and dislocation

[27]

. 

The yield stress curve, tensile strength curve and uniform 

elongation curve of 6061 aluminum alloy at different heat 

treatment temperatures are shown in Fig.3~5, respectively. 

According to the variation curve of yield stress with heat 

treatment temperatures shown in Fig.3, it can be known that 

the yield stress of 6061-T6 aluminum alloy at room 

temperature is about 250 MPa, which is obviously higher than 

the yield stress of 6061 aluminum alloy at different heat 

treatment temperatures. At the same strain rate, the yield stress 

of the reheated 6061 aluminum alloy decreases sharply and 

then increases slowly with the increase of heat treatment 

temperature. When the heating temperature is increased from 

500 °C to 590 °C, the yield stress of 6061 aluminum alloy is 

gradually increased during the stretching process. The change 

rule of tensile strength is similar to that of yield stress. 

As shown in Fig.4, the tensile strength of 6061-T6 aluminum 

200 µm 
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Fig.2  True stress-strain curves of 6061 aluminum alloy samples measured at different temperatures: (a) 500 °C, (b) 530 °C, (c) 560 °C, and (d) 590 °C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3  Yield stress curves of 6061 aluminum alloy at different heat 

treatment temperatures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Tensile strength curves of 6061 aluminum alloy at different 

heat treatment temperatures 

alloy at room temperature is about 350 MPa, which is 

significantly higher than that of 6061 aluminum alloy at 

different heat treatment temperatures. At the same tensile 

strain rate, the tensile strength of 6061 aluminum alloy 

decreases sharply and then increases rapidly with the increase 

of heat treatment temperature. Fig.5 shows the curve of uni- 

form elongation changing with the heat treatment temperature. 

It can be seen from Fig.5 that the uniform elongation of 

6061-T6 aluminum is very low at room temperature, about 

10%. When the heat treatment temperature rises to 500 °C, the 

uniform elongation of 6061 aluminum alloy is rapidly increased. 

when the heating temperature is increased from 500 °C to 530 

°C, the uniform elongation of 6061 aluminum alloy after heat 

treatment is remarkably lowered; when the temperature is 

increased from 530 °C to 560 °C, the uniform elongation of 

the heat treated 6061 aluminum alloy increases with the 

increase of the heat treatment temperature; when the 

temperature continues to increase to 590 °C, the uniform 

elongation is reduced obviously. The uniform elongation of 

this alloy shows an overall upward trend, and reaches the 

maximum value (22.92%) when temperature is 560 °C and 

strain rate is 0.0001 s

-1

. 

In order to further investigate the influence of heat 

treatment temperatures on the plasticity of 6061 aluminum 

alloy, the hardness of this alloy after heat treatment at different 

temperatures was analyzed. The transformation rule of Vickers 

hardness with heat treatment temperature is obtained through 

experiments, as shown in Fig.6.  

According to the hardness test results of 6061 aluminum 

alloy, the Vickers hardness value of the original 6061-T6 sheet 
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Fig.5  Uniform elongation curves of 6061 aluminum alloy at diffe- 

rent heat treatment temperatures 

 

selected for the test is 1325 MPa, and the hardness of the 6061 

sheet obtained after reheating is significantly changed. As can 

be seen from Fig.6, when the heat treatment temperature rises 

to 500 °C, the hardness of 6061 aluminum alloy rapidly 

decreases from 1325 MPa to 575 MPa. However, when the 

heating temperature is higher than 500 °C, the hardness of the 

treated 6061 aluminum alloy increases, and the higher the 

heating temperature, the more obvious the increase in 

hardness. When the temperature is 590 °C, the maximum 

hardness is 937 MPa.  

As can be seen from Fig.6, the hardness of 6061 aluminum 

alloy decreases first and then increases with the increase of 

heating temperature, and the hardness of 6061 aluminum alloy 

at test temperatures is lower than that of 6061-T6 aluminum 

alloy at the room temperature. 

Through the above analysis, with the increase of heat 

treatment temperature, the mechanical properties of 6061 

aluminum alloy are affected. The strength and hardness of this 

alloy are reduced, while the plasticity is optimized. 

2.2  Microstructural evolution 

Fig.7 is the microstructure of 6061 aluminum alloy sheet at 

different heat treatment temperatures; the holding time is 2 h and 

the cooling mode is air cooling. As can be seen from Fig.7, when 

the heat treatment temperature rises from 500 °C to 590 °C, the 

microstructures of 6061 aluminum alloy change obviously. 

Compared with the original microstructure of 6061-T6 in Fig.1 

and reheated 6061-T6 aluminum alloy in Fig.7, when the heating 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6  Vickers hardness curve of 6061 aluminum alloy at different 

heat treatment temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  Metallographic structure of 6061 aluminum alloy at different temperatures: (a) 500 °C/2 h/AC, (b) 530 °C/2 h/AC, 

(c) 560 °C/2 h/AC, and (d) 590 °C/2 h/AC 
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temperature is 500 °C, recrystallization occurs inside the 

reheated aluminum alloy crystal, and the grain boundary is 

dissolved back, forming a crystal branch structure. As can be 

seen from Fig.7a, when the heating temperature is 500 °C, the 

recrystallized grains grow sufficiently and are distributed 

evenly. With the increase of heat treatment temperature, the 

driving force of recrystallization of 6061 aluminum alloy 

increases gradually, the degree of grain boundary connectivity 

is high, the second phase dissolves gradually, the second 

relative dislocation resistance decreases gradually, and the 

diffusion strengthening gradually disappears. Therefore, 

during the reheating process of 6061 aluminum alloy, when 

the heating temperature is up to 500 °C, the plasticity of the 

alloy is optimized, and the strength and hardness decrease 

significantly. When the heat treatment temperature continues 

to rise, it can be seen from the metallographic structure shown 

in Fig.7a and 7b that the crystal grains gradually grow up 

through the way of grain boundary merging, and the second 

phase begins to precipitate again in the grains. The strength 

and hardness of the alloy are improved, while the plasticity is 

declined. As can be seen from Fig.7c, when the temperature is 

560 °C, the grains grow into continuous network by merging 

and the grain boundaries become clearer. The grain size of 

aluminum alloy grows obviously, and the degree of grain 

boundary connectivity is high. Due to the decomposition of 

supersaturated solid solution and the precipitation of fine 

second phase which plays a role of dispersion strengthening, 

the plasticity of the alloy is increased to the maximum 

(22.92%) and the strength and hardness are also significantly 

improved

[28]

. It can be seen from Fig.7d, when the heating 

temperature is 590 °C, a small amount of remelted balls 

appear in the aluminum alloy, and the structure pointed by the 

arrow is remelted balls. The grains of 6061 aluminum alloy 

are polygonal, and the grain boundaries are coarsened and 

clear. The strength and hardness of aluminum alloy increase 

due to the re-precipitation of the second phase and the 

formation of remelted ball, while the plasticity decreases 

slightly because of slight overheating. 

Comparing the metallographic test results shown in Fig.1 

and Fig.7 with the mechanical performance parameters shown 

in Fig.3~6, it can be seen that the metallographic analysis 

results are completely consistent with the mechanical property 

test results. Because of the obvious recrystallization process in 

the heat treatment of 6061 aluminum alloy, the properties of 

6061 aluminum alloy heat treated at different temperatures are 

significantly different. The extent of recrystallization and the 

existence of the second phase are the main factors affecting 

the plasticity of 6061 aluminum alloy. 

2.3  Constitutive model of 6061 aluminum alloy after heat 

treatment 

As can be seen from the experiment results of the 

deformation law of the heat treated 6061 aluminum alloy in 

the stretching process, the flow stress of 6061 aluminum alloy 

after heat treatment is greatly affected by the heat treatment 

temperature, the strain rate and deformation during uniaxial 

stretching. It can be seen from the experimental data that there 

is a significant nonlinear relationship between the flow stress 

σ of 6061 aluminum alloy and heat treatment temperature T, 

strain rate 

ε

�

 and strain ε. Therefore, the establishment of a 

theoretical analysis model which can comprehensively reflect 

the influence of heat treatment temperature T, strain ε and 

strain rate 

ε

�

 on the flow stress σ is helpful to fully reveal the 

influence of heat treatment process parameters on the plastic 

properties of 6061 aluminum alloy. 

2.3.1  BP artificial neural network model 

The BP neural network is a multi-layer feed-forward neural 

network based on the error back-propagation algorithm. It 

usually consists of input, hidden, and output layers, and the 

topological structure is shown in Fig.8.  

Compared with the traditional constitutive equation, the 

neural network theory is more mature. This network is 

characterized by a strong capacity for learning, generalization, 

fault tolerance, and non-linear mapping. It can approximate 

any continuous function and can be used to deal with 

non-linear problems such as material mechanical property 

prediction, flow behavior prediction and process parameter 

optimization

[29,30]

. It is mainly through the network training 

and learning of sample data to find out a certain rule, and use 

it to predict the output value of the input samples. In the 

training process of BP neural network, the threshold and 

weight of the neural network are adjusted continuously to 

make the output error of the network meet the requirements. 

Considering that the relationship between true stress σ of 6061 

aluminum alloy, heat treatment temperature T, strain rate 

ε

�

, 

and strain ε is non-linear, the BP neural network algorithm 

may be used to develop a constitutive relation model that can 

accurately predict flow stress.  

In order to accurately predict the flow stress of 6061 

aluminum alloy after heat treatment, a three-layer BP neural 

network model was adopted. The heat treatment temperature T, 

strain rate 

ε

�

 and strain ε are taken as input variables, with 

the output variable as the true stress σ of 6061 aluminum alloy. 

There are 3 nodes in input layer and 1 in output layer for the 

constructed BP neural network, while the node number of 

implication layer is one of the key factors affecting the 

 

 

 

 

 

 

 

 

 

 

Fig.8  Structure of the BP neural network model 
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performance of BP neural network. If the number of hidden 

layer nodes is too many, the network training time will be 

increased, and over fitting will easily occur during the training. 

If the number of hidden layer nodes is less, the neuron training 

will be insufficient, and the expected goal of the network will 

not be achieved. In this study, the mean squared error value is 

taken as the goal, and the optimal number of implicit layer 

neurons is mainly obtained by trial and error. Through 

repeated training, when the number of hidden layer nodes is 7, 

the mean squared error is the smallest, and BP neural network 

prediction achieves the best performance. The expression of 

3-layer BP neural network can be described as follows: 

(net )

i i

y f=

                                   (1) 

where

 

1

net

n

i i ij

j

x ω θ

=

= −

∑

 

where x

i

 is the input layer variables, representing the heat 

treatment temperature T, the strain rate 

ε

�

 and strain ε during 

uniaxial stretching; y

i

 is the output layer variable, that is, the 

flow stress σ of 6061 aluminum alloy, and ω

ij 

and θ are the 

weights and thresholds of neurons, respectively. 

To achieve quick convergence and to avoid the saturation of 

neuron output, the experimental flow stress values obtained 

earlier are normalized using Eq.(2) so the data of model 

training samples should be within the range of [-1, 1]: 

max min min

min

max min

( )( )y y x x

y y

x x

− −

= +

−

                   (2) 

x and y parameters in Eq.(2) represent the original data and 

normalized result, respectively, whereas x

min

 and x

max

 are the 

minimum and maximum values of the original data, 

respectively. 

Three strain rates (0.0001, 0.0005, and 0.001 s

-1

), four 

heating temperatures (500, 530, 560, and 590 °C), and the 

strain values (0~0.25) corresponding to the experimentally 

determined stress data were taken into consideration for the 

development of the BP neural network model of 6061 

aluminum alloy. The total number of value sets is 408; 174 

data values were extracted for model training, while the 

remaining values were used for model validation. The training 

goal of the BP neural network model was set to 10

-7

, with 

learning rate, iteration number, and validation failure number 

parameters of 0.1, 1000, and 6, respectively.  

2.3.2  GA-BP neural network model 

The BP neural network is used to predict the flow stress of 

6061 aluminum alloy under different heat treatment temperature 

conditions, which is easy to fall into the local minimum value, 

and the initial weight or threshold value of the neuron is taken 

randomly, which is easy to cause network oscillation and non 

convergence phenomenon, so a genetic algorithm is proposed to 

optimize the BP neural network and the reliability of the 

optimized BP neural network model is further verified. Genetic 

algorithm is a method to find the optimal solution through 

global search, which can effectively solve the problem of slow 

convergence and is easy to fall into local minimum of BP 

network. Its application for BP neural network model is mainly 

to optimize the initial weight and threshold of the network. In 

theory, the optimized BP neural network model achieves better 

prediction performance. Flow chart of BP network optimized by 

genetic algorithm is shown in Fig.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9  Flow chart of GA optimized BP neural network 
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In the genetic algorithm, the parameters of the genetic 

algorithm should be initialized first. In this model, the 

population size, the maximum number of iterations, the 

crossover probability and the mutation probability are set as 

20, 10, 0.3 and 0.1, respectively. In order to improve the 

convergence speed and calculation accuracy of the genetic 

algorithm, the connection weight ω

ij

 and the threshold value θ 

of the BP neural network are encoded as a whole by real 

coding. According to the topological structure of BP neural 

network, the number of neurons in input layer, hidden layer 

and output layer is R, S

1

 and S

2

, respectively. Therefore, the 

chromosome length S in genetic algorithm can be expressed as 

follows: 

1 1 2 1 2

S RS S S S S= + + +

                          (3) 

After population initialization, according to the initial 

weight and threshold value of BP neural network, BP neural 

network is trained with sample set data. The squared sum of 

error between the output stress and expected output stress of 

BP neural network is used as individual fitness evaluation 

standard. The expression of fitness function F is as follows: 

1

( | |)

n

i i

i

F k Y O

=

= −

∑

                            

(4) 

where n, Y

i

, O

i

 are expressed as the number of network 

output-layer nodes, the experimental stress value of the i-th 

node and the theoretical calculated stress value of the i-th 

node, respectively; k is the coefficient. 

The roulette method is used to select the genetic algorithm, 

and the selection probability of each individual i is p

i

. 

1

i

i

N

j

j

J

p

f

=

=

∑

                                    (5) 

/

i i

f k F=

 

where F

i

 is the fitness value of individual i. Since the fitness 

value is as small as possible, the reciprocal of fitness is 

calculated before individual selection; k and n are the 

coefficient and the number of individual populations, 

respectively.  

The real number crossing method is used for the cross 

operation. The cross operation method of the k-th 

chromosome a

k

 and the l-th chromosome a

l

 at j is as follows: 

(1 )

kj kj lj

a a b a b= − +

 

(1 )

lj lj kj

a a b a b= − +

                             (6) 

Mutation operation is selecting the j gene of the i-th 

individual a

ij

 for mutation, and the mutation operation method 

is as follows: 

max

( ) ( )

ij ij ij

a a a a f g= + −

       r>0.5 

min

( ) ( )

ij ij ij

a a a a f g= + −

       r

�

0.5 

2

2

max

( ) (1 )

g

f g r

G

= −

                             (7) 

where r

2

 is a random number and g is the number of current 

iterations; G

max 

is the maximum number of evolution with a 

value of 10 and r is a random number between [0, 1]. 

In genetic algorithm, the optimal fitness corresponding 

individuals is obtained through selection, crossover and 

genetic operation, and the optimal weights and thresholds are 

given to the network for sample training and verification of 

network output. 

2.3.3  PSO-BP neural network model 

Particle swarm optimization (PSO) algorithm is similar to 

genetic algorithm. It is a kind of optimization algorithm based 

on iteration, but there is no cross, mutation and other 

operations. Compared with genetic algorithm, it has fewer 

parameters, simpler principle and easier implementation. Its 

search process is to constantly update its speed and position in 

the solution space through particles to follow the optimal 

particles. PSO algorithm can search the optimal threshold and 

weight of BP neural network in a large space, and to a certain 

extent, it avoids the traditional BP neural network using error 

back propagation to adjust the network connection weights, 

which is easy to fall into the problem of local optimal solution. 

In PSO algorithm, the connection weights of each layer of BP 

neural network are encoded into particles, and all particles 

form a group. The basic idea of particle swarm optimization is 

to find the optimal solution through cooperation and 

information sharing among individuals in a group. The flow 

chart of PSO-BP model is shown in Fig.10. 

In N-dimensional search space, PSO algorithm first 

randomly initializes a population of particles, obtaining a 

position (Eq.8) and a random velocity (Eq.9) of the i-th 

particle. Then, fitness value F of each particle is determined 

based on Eq.(4). 

1 2 3 4

( , , , ... )

i i i i i iN

X x x x x x=

                        (8) 

1 2 3 4

( , , , ... )

i i i i i iN

ν ν ν ν ν ν=

                         (9) 

For each particle, its fitness value is compared with the best 

position which has been obtained (i.e., pbest), and if it is better, 

then the pbest is replaced with the better one. 

For each particle, its fitness value is compared with the best 

position which has been obtained in the group (i.e., gbest), and 

if it is better, then the gbest is replaced with the better one . 

In each iteration, the optimal solution found by each 

particle is pbest, and the optimal solution found by the whole 

population is gbest. Each particle updates its speed and 

position through these two extremes. In the PSO, the velocity 

and position of each particle are updated by Eq.(10) and 

Eq.(11). 

1 1

in in 1 1 in

2 2 in

(pbest )

          (gbest )

k k k

k

ν ων c r ν

c r ν

+ +

= + − +

−

                   (10) 

1 1

in in in

k k k

x x v

+ +

= +

                                (11) 

where c

1

 , c

2

 is learning rate, r

1

 , r

2

 is random number from 0 

to 1, ω is the inertia weight, and pbest is the best fitness value 

that has been obtained, gbest is the best fitness value which is 

obtained in the group. 

Then, the optimal weights and thresholds computed by PSO 
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Fig.10  Flow chart of PSO optimized BP neural network 

 

algorithm are given to the BP network for sample training and 

verification of network output. 

In a sum, the PSO-BP neural network structure is 3-7-1. 

The necessary PSO parameters are set as follows: population 

size 30, evolutionary generation 50, number of particles 20, 

acceleration factor c

1

=c

2

=2; intervals of particle position and 

velocity are [-5, 5] and [-1, l], respectively.  

2.3.4  Analysis and discussion 

The performance index of the neural network is mainly 

assessed based on the value of mean squared error (MSE) 

between the actual output value and the expected output value 

of neural network. The smaller the MSE, the better the 

prediction performance of the network. In order to compare 

the performance indexes of the three training models of BP, 

GA-BP and PSO-BP neural networks, the mean squared error 

curves of the three training models are obtained through 

calculation, as shown in Fig.11. Fig.11a, 11b and 11c show the 

mean squared error curve of BP, GA-BP and PSO-BP neural 

networks, respectively. 

From the mean squared error curve of the BP neural 

network shown in Fig.11a, the BP neural network was used to 

predict the flow stress of the heat treated 6061 aluminum alloy. 

After 33 iterations, the mean squared error of the test curve, 

validation curve and training curve converges to 0.000 482 47 

approximately. From the mean squared error curve of the 

GA-BP neural network shown in Fig.11b, the mean squared 

error of the validation curve converges to 0.000 138 12 at 

epochs 25. However, the mean squared error of the validation 

curve and test curve is all greater than 10

-4

. From the mean 

squared error curve of the PSO-BP neural network shown in 

Fig.11c, the mean squared error of the validation curve 

converges to 0.000 312 08 at epochs 86, while the mean squared 

error of the training curve converges to 10

-4

. Comparing the 

mean squared error curves of BP, GA-BP and PSO-BP neural 

networks, it can be seen that GA-BP network is slightly better 

than BP and PSO-BP networks in predictive performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11  Mean squared error curves of neural network models: (a) BP, (b) GA-BP and (c) PSO-BP 

0   5   10  15  20  25  30  35 

39 Epochs 

10

0

10

-2

10

-4

10

-6

10

-8

M
e
a
n

 
S

q
u

a
r
e
d

 
E

r
r
o

r
 

Train 

Validation 

Test 

Best wishes 

Goal 

Best validation performance is 0.000 482 47 at epoch 33 

a 

b c 

0    5    10   15   20   25   30 

31 Epochs 

10

2

10

0

10

-2

10

-4

Train 

Validation 

Test 

Best 

Best validation performance is 0.000 138 12 at epoch 25 

Train 

Validation 

Test 

Best 

10

1

10

0

10

-1

10

-2

10

-3

10

-4

0     20     40     60     80 

92 Epochs 

Best validation performance is 0.000 312 08 at epoch 86 



                           Ding Fengjuan et al. / Rare Metal Materials and Engineering, 2020, 49(6): 1840-1853                        1849 

 

In order to further verify the prediction performance of BP, 

GA-BP and PSO-BP neural network models for the flow stress 

of 6061 aluminum alloy after heat treatment, the stress fitting 

of training samples, verification samples, test samples and 

total samples by the three models is compared, as shown in 

Fig.12. 

It can be seen from Fig.12a, BP neural network was used to 

predict the flow stress of 6061 aluminum alloy after heat 

treatment, and there is a large deviation between the output 

stress of a few validation samples and the experimental results. 

From Fig.12b, compared with experimental data, there is some 

deviation between the output stress of the training samples and 

test samples for GA-BP neural network model, which is 

consistent with the result shown in Fig.11b. From Fig.12c, the 

output stress of most test samples is greatly deviated from the 

experimental data, when PSO-BP neural network was used to 

predict the flow stress of 6061 aluminum alloy after heat 

treatment. The closer the R value to 1, the higher the degree of 

fitting of the neural network model. As can been from Fig.12, 

the fitting correlation coefficients of BP, GA-BP and PSO-BP 

neural network models are all higher than 0.994, which 

indicate that the training of the three models is sufficient. The 

trained neural network models have accurate prediction ability 

for the input samples. 

In order to further verify the predicted performance of the 

trained BP, GA-BP and PSO-BP neural networks for the heat 

treated 6061 aluminum alloy, the output stress of the 

verification samples are compared with the experimental 

results, as shown in Fig.13 and Fig.14.  

It can be seen from Fig.13 that the prediction value of BP, 

GA-BP and PSO-BP constitutive models is basically 

consistent with the experimental data, which demonstrates that 

BP, GA-BP and PSO-BP neural network models can 

accurately predict the complex flow behavior of 6061 

aluminum alloy during the tensile process. However, there are 

errors in the prediction of the validation sample set using the 

three neural network models. Comparing the curves in Fig.13, 

it can be seen that the BP neural network has a relatively large 

error for the sample set number 210-217. 

The flow stress values estimated using the trained BP, GA- 

BP and PSO-BP neural network models (symbols) are com- 

pared to the experimental data (lines), as shown in Fig.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12  Fitting curves of neural network models: (a) BP, (b) GA-BP, and (c) PSO-BP 
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Fig.13  Validation results of neural network model 

The comparison suggests that for all investigated strain 

rates and heat treatment temperatures, the flow stress of the 

heat treated 6061 aluminum alloy is calculated by PSO-BP 

neural network model, which is very well matched with the 

experimental values. As can be seen from the flow stress 

prediction curves shown in Fig.14a, when the heat treatment 

temperature is 500 °C and strain rate is 0.0001 s

-1

, the 

prediction deviation of flow stress of 6061 aluminum alloy 

after heat treatment by BP neural network model is large, 

while that of GA-BP model is small. According to Fig.14c, 

when the heating temperature is 560 °C and strain rate is 

0.001 s

-1

, the prediction deviation of flow stress of 6061 

aluminum alloy after heat treatment by BP model is large, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14  Comparison of the experimental and predicted results under different heat treatment temperature conditions: 

(a) 500 °C, (b) 530 °C, (c) 560 °C, and (d) 590 °C 
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while that of GA-BP model is small. From Fig.14b and 14d, 

when the heating temperature is 530 and 590 °C, the 

prediction results of flow stress of the heat treated 6061 by BP 

and GA-BP models are in good agreement with the 

experimental results. This shows that the initial weights and 

thresholds of BP neural network are optimized by genetic 

algorithm and particle swarm optimization algorithm, which 

can improved the prediction accuracy of BP algorithm. 

The prediction error of neural network model indicates the 

accuracy of the model, so the prediction error and relative 

error of BP, GA-BP and PSO-BP neural networks are 

calculated by Eq.(12) and Eq.(13), as shown in Fig.15. 

Error

i i

E P= �                              (12) 

Relative error 100%

i i

i

E P

E

−

= ×                  (13) 

where E

i

 and P

i 

are the experimental result and the predicted 

result, respectively.  

It can be seen from Fig.15 that the prediction error of BP 

neural network model varies from −15 MPa to 10 MPa, the 

relative error varies from −10% to 25%, and the number of 

samples with a large relative error is large; while the 

prediction error of GA-BP neural network model varies from 

−12.5 MPa to 10 MPa, and the relative error varies from 

−10% to 20%. The prediction error of PSO-BP neural network 

model varies from −12.5 to 10, and the relative error varies 

from −10% to 10%, and the number of samples with a large 

relative error is small. It is obvious that the prediction error of 

PSO-BP model is smaller and more accurate than that of the 

GA-BP model, and GA-BP model is more accurate than 

traditional BP model. This result is consistent with analysis of 

Fig.13 and Fig.14. 

In order to further study the prediction error fluctuation of 

the flow stress of 6061 aluminum alloy after heat treatment by 

BP, GA-BP and PSO-BP neural network models, the error 

frequency histograms and fitting curve are drawn according to 

the prediction error of three neural network models, as shown 

in Fig.16. 

From Fig.16, the results show that the absolute error of the 

GA-BP model and the PSO-BP model has a concentration 

near zero compared with that of the BP model. This 

phenomenon shows that the GA-BP and PSO-BP models have 

smaller errors and are more controllable than the traditional 

BP model. 

The deviation between the predicted flow stress of 6061 

aluminum alloy after heat treatment by BP, GA-BP and 

PSO-BP models and the experimental stress was compared as 

a whole. The correlation coefficient R

2

 (Eq.(14)), average 

relative error AARE (Eq.(15))

[31]

 and MAE (Eq.(16))

[32]

 are 

used to measure the accuracy of the three prediction models. 

Comparison results of BP, GA-BP and PSO-BP models are 

shown in Fig.17 and Table 2. 
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Fig.15  Prediction error (a) and relative error (b) of neural 

network models 
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Fig.16  Error frequency histograms of 234 validation samples: (a) BP, (b) GA-BP, and (c) PSO-BP 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17  Correlation between experimental and predicted stress values: (a) BP, (b) GA-BP, and (c) PSO-BP 

 

Table 2  Comparison of predicted performance of neural 

network models 

Performance 

Model 

MAE AARE/% R

2

 

BP 2.226 2.01 0.9948 

GA-BP 1.91 1.78 0.9963 

PSO-BP 1.89 1.56 0.9965 
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1

MAE | |

N
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i

E P

N

=

= −

∑                           (16) 

where E and P are the experimental and predicted stress 

values, respectively; E  and P  are the average values of E 

and P, respectively; and N is the number of test data points. 

Compared to the BP neural network model: firstly, mean 

absolute error (MAE) of the prediction value of PSO-BP 

model is 1.89, excelling BP model’s 2.226 with 15% decline, 

which shows a smaller dispersion degree; then, the AARE of 

the prediction value of PSO-BP model is 1.56%, far more 

smaller than BP’s 2.01%, which indicates a smaller difference 

between the prediction values and experimental values; finally, 

the correlation coefficients (R

2

) in Fig.17a and 17c reflect that 

PSO-BP model’s  predicted  results agree well with the 

experimental results (0.9965). In general, based on the 

performance indicators, PSO-BP model presents better 

performance than BP network model.  

Compared to GA-BP model: firstly, MAE of the prediction 

value of GA-BP model is 1.91, while that of PSO-BP model is 

reduced by 1%, which shows a smaller dispersion degree; then, 

the AARE of the prediction value of PSO-BP model is 

decreased by 12.3%, which indicates a smaller difference 

between the prediction values and experimental values; finally, 

the correlation coefficients (R

2

) of PSO-BP and GA-BP 

models in Fig.17b and Fig.17c reflect that both the predicted 

results of the two models agree well with the experimental 

data. In a sum, based on the above performance indicators, 

PSO-BP model is more accurate than GA-BP network model. 

3  Conclusions 

1) Under the same heat treatment conditions, the flow stress 

of 6061 aluminum alloy increases with the increase of tensile 

strain rate, and has obvious strain rate sensitivity.  

2) The yield stress and tensile strength of 6061 aluminum 

alloy decrease sharply and then increase with the increase of 

heat treatment temperature. With the increase of heat 

treatment temperature from 500 °C to 590 °C, the plasticity of 

this alloy decreases first and then increases. When the 

temperature is 560 °C and strain rate is 0.0001 s

-1

, the 

plasticity of 6061 aluminum alloy reaches its maximum value 

(22.92%). While the hardness of 6061 aluminum alloy 

decreases first and then increases with the increase of heat 

treatment temperature. The change rule of plastic properties 

and flow behavior of 6061 aluminum alloy with the increase 

of heat treatment temperature is the common result of 

recrystallization and dynamic strain aging. 

3) BP, GA-BP and PSO-BP neural network models can 

better fit the flow behavior of 6061 aluminum alloy at 

different heat treatment temperatures, and PSO-BP neural 

network model has higher prediction accuracy and performs 

well in predicting the flow stress of 6061 aluminum alloy, 

whose average absolute error (MAE), average relative error 

(AARE) and the correlation coefficient (R

2

) are 1.89, 1.56% 

and 0.9965, respectively. 
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