镍基高温合金 U720Li 的熔化和凝固过程原位观察

赵广迪, 臧喜民, 赵 卓

(辽宁科技大学, 辽宁 鞍山 114051)

摘 要:采用高温激光共聚焦显微镜 (HT-CLSM)和差热分析 (DTA)研究了 U720Li 镍基高温合金的熔化和凝固行为。 HT-CLSM 熔化过程原位观察表明,升温至 1122 ℃时在部分(y+y')共晶颗粒前沿发生了初熔,但温度超过 1173 ℃时该 熔池才开始迅速扩大;升温至 1195 ℃时枝晶干处开始出现离散的斑点状熔池,且该熔池随温度的升高缓慢扩大;升温 至 1235 ℃时(y+y')共晶开始熔化且随温度的升高该熔池向枝晶干迅速扩展,最终在 1333 ℃枝晶完全熔化。HT-CLSM 凝固过程原位观察表明,降温至 1315 ℃时熔体开始形核凝固,并在 1180 ℃左右凝固结束;固相转化速率随温度的降 低先缓慢增加,再迅速增加到最大值,然后迅速降低并在凝固后期基本为零。DTA 分析表明,铸锭中 y'相开始发生溶 解的温度约为 1047 ℃,铸锭完全熔化的温度约为 1362 ℃。将 HT-CLSM 原位观察结果与前期的 DTA 分析结果进行对 比,发现前者的测试结果较后者低 30 ℃左右。

关键词: 镍基高温合金; 熔化; 凝固; 高温激光共聚焦显微镜; 原位观察
 中图法分类号: TG146.1⁺5
 文献标识码: A
 文章编号: 1002-185X(2020)11-3809-07

镍基变形高温合金具有优异的高温强度,抗高温蠕 变和疲劳等性能,是航空发动机涡轮盘用关键材料^[1]。 U720Li是一种以γ'-Ni₃(Al, Ti)沉淀强化的高强镍基变 形高温合金,其服役温度高达 730℃,比传统的 IN718 合金高 80℃左右^[2,3]。近年来,该合金已成为国内外 竞相研制开发的热点材料。U720Li 的合金化程度极 高,添加了大量固溶强化元素 Cr、Co、Mo、W,沉淀 强化元素 Al、Ti 以及较多的晶界强化元素 B和 Zr^[4,5]。 这导致该合金的凝固偏析十分严重,在凝固后期析出 大量非平衡(γ+γ')共晶并在其前沿形成η相、硼化物 和富 Zr 相等多种低熔点相,使其均匀化处理十分复杂 困难^[6-8]。

合理省时的均匀化工艺设计在很大程度上取决于 对合金熔化和凝固行为的认识和理解。本课题组前期 利用高温水淬法(将试样加热到一定温度后迅速掉入 冷水中冷却)测定了 U720Li 合金中各低熔点相的熔 点并结合差热分析(DTA)探索了其凝固过程^[6,7]。虽 然高温水淬法的冷却速度很快,但仍然无法避免在冷 却过程中发生一些组织转变^[9],无法准确地获得高温 状态下的显微组织,也无法保证组织转变的连续性。 另外,利用 DTA 只能间接地推测合金的熔化和凝固过 程^[10,11],无法观察该过程的组织变化。近些年开发的 高温激光共聚焦显微镜(HT-CLSM)能够连续动态地 观察金属材料在高温下的组织演变。目前已有较多学 者利用 HT-CLSM 研究了金属材料的高温组织转变行 为。Gu 等^[12]利用 HT-CLSM 结合高能 X 射线断层扫描 技术研究了 M2、100Cr6 和 C38LTT 钢从室温加热至 半固态过程的组织演变。Clark 等^[13]通过 HT-CLSM 原 位观察 γ/α 的相变过程研究了 V-HSLA 钢的界面析出 程度。Attallah 等^[14]利用 HT-CLSM 原位观察了镍基高 温合金 RR1000 中一次 γ'相的熔化过程。Ling 等^[15]利 用 HT-CLSM 研究了不同冷却速度下 IN718 合金的凝 固偏析行为。然而,至今未见关于利用 HT-CLSM 探 索 U720Li 合金高温组织演变行为的报道。

为了更深入地理解 U720Li 合金的熔化和凝固行 为,本研究利用 HT-CLSM 对该合金的熔化和凝固过程 进行了原位观察。但 HT-CLSM 温度测量和控制系统的 特性决定了在加热和冷却过程中试样表面的实际温度 与热电偶的测量温度之间必然存在一定差异^[12,14]。因 此,本研究还利用 DTA 分析了 U720Li 合金铸锭的熔 化行为。通过将 HT-CLSM 结果与前期的 DTA 分析结 果进行对比来明确上述温度差的大小。研究结果可为该 合金均匀化处理工艺的改良提供一定理论指导。

1 实 验

以高纯金属 Ni、Co、Cr、Al、Ti、Mo、W、Zr,

收稿日期: 2019-11-15

基金项目: 国家自然科学基金(51904146, U1960203); 辽宁省博士科研启动基金(2019-BS-125)

作者简介: 赵广迪, 男, 1989年生, 博士, 讲师, 辽宁科技大学, 辽宁 鞍山 114051, 电话: 0412-5929381, E-mail: gdzhao12s@alum.imr.ac.cn

Ni-B 中间合金和石墨片为原材料,利用真空感应炉制备 5 kg 的 U720Li 合金铸锭。精炼时间为 5 min,浇铸温度为 1420 ℃。利用电感耦合等离子体原子发射光谱法(ICP-AES)测定该铸锭的化学成分,结果如表 1 所示。

利用线切割在铸锭的 1/2 半径处切取尺寸为 Φ8 mm×3 mm 的试样。利用 400#砂纸将其表面打磨光亮 后将其中一个底面进一步研磨抛光并电解腐蚀。腐蚀 剂为 13 mL H₃PO₄ +42 mL HNO₃ +43 mL H₂SO₄, 电压 为 5 V, 时间 3~5 s。利用金相显微镜 (OM)和场发 射扫描电镜 (SEM)观察其显微组织,并用 SEM 配 备的能谱 (EDS) 仪分析铸锭中各析出相的化学成分。

采用日本 VL2000DX-SVF18SP 型高温激光共聚 焦显微镜(HT-CLSM)进行了熔化和凝固过程原位观 察试验。图 1a为HT-CLSM的原理图。将上述经组织 观察后的试样放入高纯氧化铝坩埚中(已腐蚀的面朝 上),将坩埚置于石英观察窗下方的铂台上。利用高能 激光束照射试样表面,在水平方向用声控光学偏向单 元,在垂直方向用电控光束扫描镜,使激光束以一定 的频率在试样表面扫描,同时试样表面也会将激光反 射到感光器中,然后以 30 帧/s 的速度将聚焦图像储存 在电脑上。为了防止试样发生氧化,在整个测试过程 中在加热炉内始终通入高纯氩气保护。值得注意的是 测温热电偶位于氧化铝坩埚下方,这必然导致试样表 面实际温度与测试温度有所差别^[12,14]。图 1b 展示了 HT-CLSM 试验的时间-温度循环曲线。主要包括如下 几个阶段: (1) 将试样以 40 °C·min⁻¹升温至 200 °C; (2) 将加热速度提高到 500 °C·min⁻¹继续升温至 1000 °C; (3) 将加热速度降低至 10 °C·min⁻¹ 升温至 1300 °C; (4) 手动升温至 1333 °C; (5)以 17.5 °C·min⁻¹ 降 温至 1100 °C; (6) 以 500 °C·min⁻¹迅速降至室温。试 验结束后利用 Image Pro Plus 6.0 图像分析软件计算 HT-CLSM 记录的图片中固相的面积分数(f_s)与温度 (T) 的定量关系。然后,对固相分数与温度的拟合曲 线求微分得到固相转变速率($f_s = df_s/dT$)。

为了确定 HT-CLSM 测试结果的准确度,利用差 热分析(DTA)研究了 U720Li 合金铸锭的熔化行为。 试样取自铸锭的 1/2 半径处,尺寸为 **Φ3 mm×2 mm。** 将其表面用 400#砂纸打磨光亮后放在无水乙醇中超 声清洗并烘干。将烘干后的试样放在氧化铝坩埚内, 在高纯氩气保护下进行测试,试验温度为 900~1400 ℃,升温和降温速度均为 10 ℃·min⁻¹。

2 结果与讨论

图 2 为 U720Li 合金铸锭的 OM 及 SEM 显微组织。 可见该合金的枝晶组织十分发达,枝晶间析出了大量 葵花状(γ +γ')共晶(如图 2a)。在某些(γ +γ')共晶颗粒 前沿析出了少量块状 *M*C 碳化物、板条状 η 相、块状 硼化物和不规则形状的富 Zr 相(如图 2b 和 2c)。EDS 分析表明,该 *M*C 碳化物强烈富 Ti 并含较高的 Mo 和 W(如图 3a),η 相主要富 Ni 和 Ti (如图 3b),硼化 物主要富 Mo 和 Cr (如图 3c),富 Zr 相主要富 Ni 和

Fig.1 Schematic illustration for the HT-CLSM (a) and the curve of the actual thermal cycles performed in the HT-CLSM for U720Li alloy (b)

Fig.2 Dendritic structures of U720Li alloy (a) and morphologies of the interdendritic precipitates (b, c)

Zr (如图 3d),这与前期研究结果完全一致^[6,7]。另外, 在枝晶干和枝晶间区域均析出了大量 y'颗粒,并且由于 y'形成元素 Ti、Al 向枝晶间偏析,从枝晶干到(y + y')共 晶边缘 y'的尺寸逐渐增大^[8]。

图 4 为 U720Li 合金铸锭加热至不同温度时的 HT-CLSM 照片。可见,当温度升至 1122 ℃时,在部 分(γ+γ')共晶颗粒前沿出现了少量初熔(如图 4b),该 熔池在 1122~1170 ℃没有明显扩大,而当温度升至 1173 ℃以上时该熔池开始迅速扩大(如图 4c 和 4d)。 当温度达到 1195 ℃左右时,在枝晶干局部区域开始 出现很多离散分布的小斑点(如图 4d),并且随着温 度的升高这些斑点缓慢增多扩大。当温度升至 1235 ℃时,枝晶间的(y+y')共晶开始熔化,并且随着温度的 升高熔池迅速向枝晶干扩展 (如图 4e)。最后,当温度 升至 1333 ℃时,枝晶形貌完全消失,铸锭完全熔化 (如图 4f)。此外,通过仔细观察还发现当温度升高 至 1060 ℃时,枝晶中心处出现了明显的发暗区域, 并且随着温度的升高该发暗区域逐渐向四周扩展(如 图 4b 和 4c),但升温至 1173 ℃以上时该区域不再明 显扩大(如图 4d)。

前期利用高温水淬法测得 U720Li 铸锭中富 Zr 相的 熔点为 1130~1140 ℃, 硼化物的熔点为 1180~1190 ℃,

图 4 U720Li 合金铸锭熔化过程的显微组织演变

Fig.4 HT-CLSM snapshots for the sequence of melting of the U720Li ingot during heating at 10 °C ⋅min⁻¹ with different temperatures: (a) 29 °C, (b) 1122 °C, (c) 1173 °C, (d) 1195 °C, (e) 1239 °C, and (f) 1333 °C

η相的熔点为 1190~1200 ℃^[7]。显然,富 Zr 相的熔点 最低。考虑到高温水淬法与 HT-CLSM 原位观察的测 试结果均与真实情况有所差异,推测在 1122 ℃左右 在某些(γ+γ')共晶颗粒前沿发生的初熔应该是富 Zr 相 的熔化导致的,而在 1173 ℃以上该熔池发生明显扩 大是由于硼化物和η相发生了熔化。枝晶干处离散分 布的斑点随温度的升高而不断扩大的现象表明这些斑 点为细小的熔池。虽然该斑点状熔池出现的温度比枝 晶间(γ+γ')共晶的熔化温度更低,但其扩展速度明显更 慢,这使枝晶干比枝晶间更晚完全熔化。总之,结合 前期的高温水淬试验和本研究 HT-CLSM 原位观察可 推断 U720Li 合金铸锭的熔化过程为:富 Zr 相熔化 (~1122 ℃开始)→硼化物和η相相继熔化(~1173 ℃ 开始)→枝晶干局部斑点状熔化(~1195 ℃开始)→(γ +γ')共晶熔化(~1235 ℃开始)→枝晶完全熔化(~1333 ℃)。显然,U720Li 合金铸锭的初熔温度较低,且熔 化温度区间较宽。如果均匀化制度选择不当,很容易 发生过烧或均匀化不彻底。

为了明确图 4 中枝晶干处发暗区域的形成原因, 设计了一个补充实验。在铸锭 1/2 半径处切取 10 mm ×10 mm×10 mm 的试样,将其在 1100 ℃保温 10 min 后迅速水淬,然后利用 SEM 对其进行组织观察,结果 如图 5 所示。可见枝晶中心处的 y '相已经完全溶解, 形成了类似图 4 中的发暗区域,且越靠近枝晶间(y+y') 共晶边缘 y'的溶解程度越低。显然,图 4 中发暗区域 的形成是由于 y'相的不断溶解,即该发暗区域为 y'完 全溶解区。另外,该 y'完全溶解区随着温度的升高逐 渐向四周扩展并在 1173 ℃以上不再扩大(如图 4c 和 4d),主要是因为靠近枝晶间的较粗大 y'只能在更高温 下才能溶解,且位于(y + y')共晶附近的十分粗大 y'(如 图 2b)在整个升温过程中都可能无法溶解。

图 6 为 U720Li 合金冷却至不同温度时的 HT-CLSM 照片。已凝固区域表现为发暗的颜色,液相 区域表现为发亮颜色。当温度降低至 1315 ℃时熔体 开始形核凝固(如图 6a)。随着温度的降低固相不断

图 5 U720Li 合金铸锭在 1100 ℃保温 10 min 后的水淬组织

Fig.5 Microstructures of U720Li alloy ingot soaked at 1100 °C for 10 min and then quenched in water: (a) lower magnification and (b) higher magnification 长大并逐渐向枝晶间扩展(如图 6b~6d)。已有较多文献报道,随着凝固的进行 Ti 的偏析程度逐渐增加,最终导致非平衡(y + y')共晶在最后残余液体中析出^[9, 16, 17]。 遗憾的是通过 HT-CLSM 无法观察到非平衡共晶的生长过程。

图 7 展示了 U720Li 合金的瞬时固相分数及固相 转变率随温度的变化。可见,该合金的凝固过程明显 地分为 3 个阶段,即初始缓慢生长阶段(1315~1302 ℃),快速生长阶段(1302~1280 ℃)和后期缓慢生长 阶段(1280~1180 ℃)。显然,第1阶段和第2阶段的 温度区间较窄,而第3阶段的区间明显较宽。固相转 变率基本呈高斯分布特征,即随着温度的降低先缓慢 增大,当温度降低至 1302 ℃以下时开始迅速增大并 在 1292 ℃时达到峰值,峰值过后随着温度的降低迅 速下降并在 1280 ℃以下几乎降低为零。初始阶段固 相转变率很低主要是因为该阶段的过冷度较小。随着 温度的降低,过冷度逐渐增加,使固相转变速率大幅 度提高,形成了快速生长阶段。然而,在凝固后期 Ti 元素的偏析程度显著增加^[7],使固相和残余液相的成 分差异明显增大,此时γ基体不得不吸收更多富集在 残余液体中的 Ti 原子, 使其生长速度显著降低^[6], 从 而形成了后期缓慢生长阶段。由于 U720Li 合金具有 很宽的凝固区间 (~135 ℃),且在凝固后期长时间残 留少量液膜,因此该合金具有很强的显微疏松形成倾 向和热裂倾向[17]。

图 8 为 U720Li 合金铸锭的 DTA 升温曲线。可见 该 DTA 曲线上存在 2 个较明显的吸热峰。第 1 个峰较 宽且矮, 起始温度约为 1047 ℃, 峰值温度为 1121 ℃, 但无法确定其结束温度。根据上述 HT-CLSM 原位观 察(如图 4)和补充实验(如图 5)可判断该峰对应 γ' 相的溶解过程。第 2 个峰又宽又高, 起始温度约为 1201 ℃, 峰值温度为 1347 ℃, 结束温度约 1362 ℃。显然, 该峰主要对应铸锭的熔化过程,包括 γ 基体、枝晶间 (γ + γ')共晶及其前沿其他析出相的熔化。

将通过 HT-CLSM 熔化过程原位观察得到的结果 与 DTA 分析结果进行对比发现,HT-CLSM 测得的 U720Li 铸锭完全熔化温度较 DTA 的约低 29 ℃。另外, 根据前期的 DTA 凝固行为分析,当冷却速度为 10 ℃·min⁻¹时 U720Li 合金的凝固起始温度为 1347 ℃^[7]。 鉴于在 2.5~20 ℃·min⁻¹范围内冷速对 U720Li 合金的 凝固起始温度并没有影响^[8],可推断出通过本研究 HT-CLSM 凝固过程原位观察得到的凝固起始温度较前 期的 DTA 分析结果低约 32 ℃。该温度差与上述完全 熔化温度的差值十分接近。显然,HT-CLSM 的测试结 果较 DTA 分析结果低 30 ℃左右。这主要是 HT-CLSM

图 6 U720Li 合金凝固过程的显微组织演变行为

Fig.6 HT-CLSM snapshots for the sequence of solidification of U720Li alloy during cooling at 17.5 °C ⋅min⁻¹ with different temperatures:
(a) 1312 °C, (b) 1299 °C, (c) 1291 °C, and (d) 1280 °C

图 7 U720Li 合金的固相分数和固相转变率与温度的关系 Fig.7 Solid fraction and transformation rate of solid phase as a function of temperature at a cooling rate of 17.5 ℃·min⁻¹

的测温和控制系统的特征导致的。尽管 HT-CLSM 的 测试结果较实际温度有一定差异,但通过该方法可直 接观察到合金的整个熔化和凝固过程的组织演变,获 得较 DTA 分析和高温水淬法更加丰富的结果。将 HT-CLSM 原位观察与 DTA 分析相结合能够克服它们 各自的缺点,有利于更全面更准确地认识 U720Li 这 类镍基高温合金的熔化和凝固行为。

Fig.8 Heating DTA curve of U720Li ingot

3 结 论

 升温至 1122 ℃时在部分(y +y')共晶颗粒前沿 发生初熔并且在 1173 ℃该熔池开始迅速扩大,升温
 至 1195 ℃时枝晶干发生斑点状局部熔化并且熔池随
 温度升高缓慢扩大,升温至 1235 ℃时(y +y')共晶开始
 熔化且熔池迅速向枝晶干扩展,最终在 1333 ℃左右
 枝晶完全熔化。另外,在升温过程中枝晶中心的细小 y'最先溶解,且 y'溶解区逐渐向四周扩展。

 2)降温至1315 ℃时开始形核凝固,并在1180 ℃ 左右凝固结束;凝固过程可清晰地分为3个阶段:分 别是初始缓慢生长阶段(1315~1302 ℃),快速生长阶 段(1302~1280 ℃)和后期缓慢生长阶段(1280~ 1180 ℃)。

3) γ'溶解起始温度约为1047 ℃,峰值温度为1121
 ℃,铸锭的完全熔化温度为1362 ℃。

4) 通过 HT-CLSM 原位观察测得的铸锭完全熔化 温度较本的 DTA 分析结果低 29 ℃,通过 HT-CLSM 测得的凝固起始温度较前期的 DTA 结果低 32 ℃,这 说明 HT-CLSM 与 DTA 的测试结果相差 30 ℃左右。

参考文献 References

- Reed R. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2008: 217
- [2] Liu Fangfang, Chen Jiayu, Dong Jianxin et al. Materials Science and Engineering A[J], 2016, 651: 102
- [3] Prasad Kartik, Sarkar Rajdeep, Ghosal P et al. Materials & Design[J], 2010, 31(9): 4502
- [4] Jackson M, Reed R. Materials Science and Engineering A[J], 1999, 259(1): 85
- [5] Na Y, Park N, Reed R. Scripta Materialia[J], 2000, 43(7): 585
- [6] Zhao Guangdi, Yu Lianxu, Yang Guoliang et al. Journal of

Alloys and Compounds[J], 2016, 686: 194

- [7] Zhao Guangdi, Yu Lianxu, Qi Feng et al. Acta Metallurgica Sinica[J], 2016, 29(6): 518
- [8] Chang Litao, Jin Hao, Sun Wenru. Journal of Alloys and Compounds[J], 2015, 653: 266
- [9] Zhao Guangdi, Yang Guoliang, Liu Fang et al. Acta Metallurgica Sinica[J], 2017, 30(9): 887
- [10] Chen Sinnwen, Jeng Shihchang. Metallurgical & Materials Transactions A[J], 1997, 28: 503
- [11] Sponseller D. Superalloys 1996[C]. New York: TMS, 1996: 259
- [12] Gu G, Pesci R, Langlois L et al. Acta Materialia[J], 2014, 66:
- [13] Clark Samuel, Janik Vit, Rijkenberg Arjan et al. Materials Characterization[J], 2016, 115: 83
- [14] Attallah M, Terasaki H, Moat R et al. Materials Characterization[J], 2011, 62(8): 760
- [15] Ling Lishibao, Han Yanfeng, Zhou Wei et al. Metallurgical and Materials Transactions A[J], 2015, 46: 354
- [16] Seo S, Lee J, Yoo Y et al. Metallurgical and Materials Transactions A[J], 2011, 42: 3150
- [17] Zhang J, Singer R. Metallurgical and Materials Transactions A[J], 2004, 35: 1337

In-situ Observations of Melting and Solidification Processes of Ni-based Superalloy U720Li

Zhao Guangdi, Zang Ximin, Zhao Zhuo

(University of Science and Technology Liaoning, Anshan 114051, China)

Abstract: The melting and solidification behaviors of Ni-based superalloy U720Li were investigated by high temperature confocal laser scanning microscopy (HT-CLSM) and differential thermal analysis (DTA). The in-situ HT-CLSM observation of melting process shows that incipient melting takes place at the front of some eutectic ($\gamma+\gamma'$) particles at about 1122 °C. But the molten pools cannot expand rapidly until the temperature is increased above 1173 °C. Discrete spotted molten pools occur on localized region of the dendrite area at around 1195 °C, and the radius of these molten pools increases slowly with the increase of temperature. The eutectic ($\gamma+\gamma'$) particles precipitated in the interdendritic region begin to melt at about 1235 °C and the molten pools rapidly expand towards the dendrite area as the temperature increases. Finally, the dendrites are completely melted at 1333 °C. The in-situ HT-CLSM observation of solidification process shows that the melt starts to solidify at about 1315 °C and the solidification ends at around 1180 °C. As the temperature decreases the transformation rate of the solid phase initially increases slowly and then increases rapidly until a maximum value; afterwards it quickly decreases and at the final solidification stage it is about zero. The DTA analysis indicates that the onset temperature of γ' dissolution in the ingot is about 1047 °C, and the ingot is completely melted at 1362 °C. By comparison, it is clear that the results of HT-CLSM in-situ observations are about 30 °C lower than those of DTA analysis.

Key words: Ni-based superalloy; melting; solidification; high temperature confocal laser scanning microscopy; in-situ observation

Corresponding author: Zhao Guangdi, Ph. D., Lecturer, School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, P. R. China, Tel: 0086-412-5929381, E-mail: gdzhao12s@alum.imr.ac.cn