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Abstract: The main parameters that characterize the morphology quality of multi-layer and multi-pass laser metal printed parts are 

the surface roughness and the error between the actual printing height and the theoretical model height. This study employed the 

Taguchi method to establish the correlation between process parameter combinations and multi-objective characterization of metal 

print morphology quality (height error and roughness). The signal-to-noise ratio (SNR) and grey correlation analysis method were 

used to predict the optimal parameter combination for multi-layer and multi-pass printing: laser power 800 W, powder feeding rate 

0.3 r/min, step distance 1.6 mm, scanning speed 20 mm/s. Subsequently, we constructed the Genetic Bayesian-back propagation 

network (GB-BP) to predict multi-objective responses. Compared with the traditional BP network, the GB-BP network improved the 

accuracy of predicting height error and surface roughness by 43.14% and 71.43%, respectively. The network can accurately predict 

the multi-objective characterization of the morphology and quality of multi-layer and multi-pass LDED metal printed parts. 
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Laser-directed energy deposition (LDED) is a specific addi-

tive manufacturing technology that employs precise process 

parameters to produce solid workpieces. It facilitates surface 

modification of the workpiece through a specialized cladding 

layer to enhance its high temperature, wear, and corrosion re-

sistance. Due to its inherited characteristics, such as high en-

ergy density, high efficiency, high design freedom, rapid con-

struction speed, and exceptional physical and mechanical 

properties, LDED is extensively utilized in aerospace[1], med-

ical equipment[2], and other large-sized components[3]. Metal 

powder is the most utilized raw material in this process, in 

which a nozzle injects the powder into the molten pool under 

the influence of a carrier gas before cooling it into shape. 

With the rapid development of laser cladding technology[4], 

the requirement for higher surface-forming quality of work-

pieces has increased, and the demand for shape and size devi-

ations in multi-layer and multi-pass cladding processes has 

become more stringent. 

The laser cladding process involves various parameters, in-

cluding laser spot diameter, laser power, powder-feeding rate, 

scanning speed, overlap rate, shielding gas flow rate, and 

powder-feeding gas flow rate. Different parameter combina-

tions affect the forming quality of the printed parts[5][6][7]. Ex-

tensive research has been conducted on the influence of the 

single-layer cladding process on cladding height, cladding 

width, and cladding depth[8], as well as the influence of pro-

cess design on properties such as strength, hardness, 

high-temperature resistance, and corrosion resistance in the 

cladding layer[9][10][11]. Numerous experimental verifications 

are employed to analyze how different process parameters af-

fect single-layer cladding[12]. Taguchi experiments, response 

surface methodology, and grey correlation analysis are always 

used to optimize parameters and predict responses[13][14]. 

Marzban et al.[15] conducted an orthogonal experiment and 

found the optimal solution by combining the principal com-

ponent analysis (PCA) method with the TOPSIS technique for 

order preference by similarity to the ideal solution. Deng et 

al.[16] combined Taguchi and grey correlation analysis to opti-
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mize the multi-objective response parameters of the TiC parti-

cle-reinforced iron-based composite cladding layer prepared 

by pre-set powder laser cladding. Mondal et al.[17] conducted 

an orthogonal experiment to study the effects of laser power, 

scanning speed, and powder feeding rate on the quality of the 

cladding layer on the AISI1040 steel substrate and proposed a 

multi-objective response technology using grey correlation 

analysis to determine the optimal process parameters. Quazi et 

al.[18] adopted the Taguchi optimization method and used SNR 

response analysis and Pareto analysis of variance (ANOVA) to 

analyze the results. The optimal parameter combination ob-

tained from the optimization process was experimentally test-

ed, revealing significant improvements in surface hardness 

and roughness of the AA5083 cladding layer. Yu et al.[19] used 

the Taguchi grey correlation method to optimize the process 

parameters of laser cladding Fe313, selecting cladding width, 

height, and dilution rate as response targets. The results 

demonstrated that the optimized cladding layer improves 

morphology and structure compared to the unoptimized layer. 

Lian et al.[20] designed a Taguchi experiment to study the ef-

fects of process parameters on the microhardness and wear 

volume of the cladding layer to improve its performance. The 

grey correlation analysis method was used to determine the 

optimal process parameters and predict their grey correlation 

degree. The results showed that the average error between the 

predicted and experimental results was 5.3%. Lee et al.[21] In-

vestigated process parameters' impact on the geometry of AISI 

M4 single-pass laser cladding layers and employer response 

surface methodology to establish a mathematical model for 

predicting and controlling the layer’s geometry. Alam et al.[22] 

utilized a central composite response surface methodology to 

design orthogonal experiments for investigating the influence 

of selected process parameters on the geometry and hardness 

of a single-pass laser clad-ding layer of AISI 420 metal pow-

der. A multivariate regression model was also established to 

predict the cladding layer’s hardness, the weld bead’s aspect 

ratio, and the substrate’s wetting angle. Bhardwaj et al.[23] 

studied the influence of process parameters (laser power, 

scanning speed, and powder feeding rate) on the cladding lay-

er’s geometric properties (dilution rate) based on the response 

surface method and variance analysis. The mapping relation-

ship between parameters and geometric properties was estab-

lished by regression modeling to find the optimal experi-

mental parameters. 

In addition to the aforementioned traditional methods, with 

the rapid development of machine learning, artificial neural 

networks, especially BP neural networks, have been widely 

used in laser cladding for process parameter optimization and 

multi-objective response prediction[24][25]. Li et al.[26] developed 

a BP neural network to predict the influence of process pa-

rameters on dilution rate, and the model’s prediction error was 

5.89%. However, this model is highly dependent on the size of 

the data set and is prone to falling into local minima when the 

number of samples is limited. Swarm intelligence algorithms, 

such as genetic algorithms (GA)[27], have strong global opti-

mization capabilities. Therefore, many scholars have proposed 

combining GA with BP networks to solve the problems of 

slow GA convergence, falling into local minima, and achiev-

ing fast and accurate global optimization. Ilanlou et al.[28] 

conducted a full factorial experiment to investigate the influ-

ence of process parameters on the geometric characteristics of 

Inconel 718 rails. They predicted the geometric characteristics 

of the cladding layer under different parameter combinations 

through linear regression and GA. Yang et al.[29] integrated BP 

and GA to establish a prediction model linking process pa-

rameters with the surface morphology quality of laser clad-

ding layers and verified the accuracy of the model’s prediction 

through experiments. Liu et al.[30] established a GA-BP neural 

network, using laser power, scanning speed, and powder 

thickness as process parameters; they conducted a full factori-

al experiment to produce a dataset and predicted the geometric 

characteristics of the single-layer, single-pass cladding layer 

of a high-power semiconductor laser. Yu et al.[31] designed an 

orthogonal experiment with overlap rate, powder feeding rate, 

and scanning speed as process parameters, and established a 

neural network model to predict the crack density of a 

high-hardness nickel-based laser cladding layer. The results 

were optimized using GA, and the model’s reliability was 

validated through experimental verification. Deng et al.[32] de-

signed a Taguchi experiment and used the SNR and variance 

analysis method to analyze the effects of laser power, spot 

diameter, overlap rate, and scanning speed on the microhard-

ness of Ti(C, N) ceramic cladding layers. Furthermore, a BP 

neural network and quantum particle swarm optimization al-

gorithm were employed to establish a mapping relationship 

between process parameters and responses for accurate pre-

diction. Wang et al.[33] developed a powder-scale multi-physics 

model, which incorporates mass transfer, phase change, and 

heat transfer during the LDED process to predict the geomet-

ric characteristics of a single-layer, single-pass cladding track. 

In addition, a Gaussian regression model was established to 

predict the geometry of the clad-ding track under various pa-

rameter combinations. 

The existing parameter optimization methods for LDED 

primarily focus on single-layer, single-pass, or single-layer 

multi-pass cladding, with limited research conducted on mul-

ti-layer and multi-pass cladding. However, due to the heat ac-

cumulation between layers, the manufacturing accuracy of 

multi-layer and multi-pass cladding is more sensitive to pro-

cess parameters. However, when the orthogonal test involves 

many factors, it is difficult to determine the changing pattern 

of the test data. The optimal result is usually a combination of 

test parameters, which can neither accurately predict the 

height error and surface roughness nor obtain the optimal 

process parameters. 

This study uses the Taguchi method to design orthogonal 
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experiments, analyzes the SNR of multi-objective responses, 

and uses the grey correlation analysis method to predict the 

optimal parameters for multi-layer and multi-pass printing so 

that the theoretical and actual height errors( H ) of the print-

ed parts and the surface roughness( Ra ) are minimized. Ex-

perimental verification is carried out. After that, the GB-BP 

network is built to predict multi-objective responses. 

1 Experimental materials and methods 

Fig.1 illustrates the research approach, which includes laser 

cladding equipment and a visual inspection system. Point cloud 

data is collected to calculate the printed parts’ height difference 

and surface roughness. A hybrid approach employing the 

Taguchi method and grey relational analysis is used to identify 

the optimal combination of parameters. Furthermore, the 

GB-BP network model is constructed for multi-objective re-

sponse prediction.

Fig.1 Schematic diagram of laser cladding system and method flow

1.1 Experimental materials and equipment  

The printing equipment includes an optical platform, a 

three-axis motion system, a control console, a powder feeder, 

a laser, a powder feeder barrel, a water cooler, and a structured 

light camera, as shown in Fig.2. The structured light camera 

projects a specially designed pattern onto the surface of a 

three-dimensional object while utilizing an integrated camera 

to observe image distortion on the physical surface. 

Fig.2 Dimensional adaptive correction system in the LDED process 

 

The substrate used in the experiment is Fe316 stainless steel 

with a size of 100mm×100mm×8mm; the experiments were 

carried out using gas-atomized Fe316L powder with a particle 

size of 120∼280 mesh by Carpenter Additive. Fe316L powder 

is mainly spherical, with delicate satellites attached to the sur-

face of powder particles. The powder and substrate composi-

tion are confirmed using Energy Dispersive Spectroscopy 

(EDS), and the elemental composition is presented in Table 1. 

Before laser cladding, the metal powders were incubated in a 

drying oven at 100◦C for two hours. The powder was then 

loaded into a powder hopper before being deposited onto a 

substrate via laser cladding. Before deposition, the substrate 

surface was wiped with anhydrous ethanol for decontamina-

tion. After drying, the experiment was carried out. 

 

Table 1 Substrate material and powder material composition list 

Element Fe C Cr Si Ni Mn Mo 

Fe316L 

Mass% 
Bal. 0.03 17.0 0.5 13.0 0.2 2.0 

Fe316 

Mass% 
Bal. 0.06 18.16 0.49 8.05 1.06 0.11 

 

The experiment used a laser cladding system with a maxi-

mum output power of 2000 W. The laser spot diameter is 2 

mm, and high-purity argon was used as shielding and pow-

der-feeding gas during cladding. After multi-layer laser clad-

ding, an optical camera collected the 3D point cloud model of 

the component to calculate its H and Ra . Under ideal condi-

tions, the surface coating after multi-lap cladding comprised 

convex peaks and concave valleys with relative regularity in 

the cross-section. Fig.3 illustrates the profile curve of this 

cross-section and the roughness Ra  can be calculated by 

Eq.(1).  
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   (1) 

where iz is the longitudinal distance of the section pro-file; L is 

the transverse distance of the section contour; n is the number 
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of test points;
iz is the longitudinal distance of the 

cross-section profile of each test point. 

Fig.3 Sketch of ideal coating cross-section outline 

 

The multi-layer, multi-pass laser deposition process gradu-

ally completes the forming or repairing of complex structures 

by depositing multiple layers (multiple superpositions) of 

metal materials in multiple passes (each melting path). The 

laser beam is focused on the metal surface and locally heats it 

to a molten state. The molten metal combines with the fed 

metal powder or wire to form a pool. In each layer, the melt-

ing trajectory of the laser molten pool scans along a predeter-

mined path, and after each layer is completed, the deposited 

molten metal quickly cools and solidifies. The laser continues 

to act on the new layer to bond it to the previous layer metal-

lurgically, and the whole process is repeated many times until 

the desired part shape is constructed. The repeated 

cross-scanning characteristics of this process place higher re-

quirements on the scanning path and direction[34]. The filling 

path determines the internal structure of the printed model and, 

therefore, directly affects the strength and stability of the ob-

ject. 

The angle setting of linear filling impacts the strength, ap-

pearance, and stability of the printed parts in 3D printing. The 

angle of linear filling affects the strength of the printed parts 

in different directions. Usually, the strength direction of the 

printed part is parallel to the direction of the filling path. 

Common filling angle settings are 0°, 45°, 90°, and 135°, and 

the filling path at each angle provides different strength sup-

port. When filling at 0° and 90°, the printed parts perform well 

when subjected to lateral and longitudinal pressure. 45° and 

135° filling provide balanced support in multiple directions. 

Due to the staggered layout of 45° and 135° angles, it can 

share strength in multiple directions and generally provide 

more uniform strength than horizontal or vertical filling[35]. 

Therefore, this work adopts the second filling method, as 

shown in Fig.4(a), and the multi-layer and multi-pass cladding 

effect is shown in Fig.4(b). 

Fig.4 Schematic diagram of multi-layer and multi-pass cladding fill-

ing path and effect: (a) Fill path direction, (b) Multi-layer and mul-

ti-pass cladding. 

 

1.2 Experimental design  

In this study, laser power, powder feeding rate, step distance, 

and scanning speed were selected as the factors influencing 

the flatness of the component’s top surface. Table 2 lists these 

four factors and their corresponding levels. The L(16)(4
4) 

Taguchi orthogonal experimental design was adopted, with the 

orthogonal table presented in Table 3. Two response items, 

H  and Ra , were selected to evaluate the printing quality 

and obtain a multi-layer clad-ding workpiece with excellent 

comprehensive performance. 

 

Table 2 Process parameters of laser cladding and their levels 

Parameters Notations Level1 Level2 Level3 Level4 

Laser power (W) LP 800 900 1000 1100 

Powder feeding 

rate (r/min) 
PR 0.3 0.4 0.5 0.6 

Step distance (mm) SD 1.0 1.2 1.4 1.6 

Scanning speed 

(mm/s) 
SS 16 18 20 22 

 

2 Results and discussion 

2.1 Experiment results 

Different combinations of process parameters will result in 

different thicknesses of the cladding layer. Therefore, it is im-

perative to determine the single-layer cladding thickness cor-

responding to each parameter combination before multi-layer 

cladding. The 16 sets of parameters in Table 3 were used for 

laser cladding, and the single-layer H1 cladding height was 

measured as the benchmark thickness for multi-layer cladding. 

 

Table 3 L(16)(4
4) Taguchi orthogonal experimental design 

No. LP (W) PR (r/min) SD (mm) SS (mm/s) 

1# 900 0.6 1.0 16 

2# 1000 0.4 1.2 16 

3# 800 0.6 1.2 20 

4# 1100 0.3 1.2 18 

5# 800 0.5 1.0 18 

6# 900 0.5 1.2 22 

7# 1000 0.3 1.0 22 

8# 1100 0.4 1.0 20 

9# 800 0.3 1.4 16 

10# 1000 0.5 1.4 20 

11# 1100 0.6 1.4 22 

12# 900 0.4 1.4 18 

13# 1100 0.5 1.6 16 

14# 900 0.3 1.6 20 

15# 1000 0.6 1.6 18 

16# 800 0.4 1.6 22 

 

 Fig.5 illustrates the experimental results of cladding a sin-

gle layer, and Table 4 provides the thickness of the cladding 

layer corresponding to each set of parameters. 
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The heights were used as the base heights for 16 parameter 

combinations, and multi-layer cladding was performed. The 

experimental results are shown in Fig.6. Due to the installation 

limitations of the measuring equipment, our current printing 

height can reach 20mm. It is reasonable to use δH to charac-

terize it within this range. In principle, this method is also 

valid for high printing thicknesses. Table 5 lists the measure-

ment results of the two responses of all specimens. 

Fig.5 16 sets of parameters for single layer cladding experiment 

 

Table 4 H1 corresponding to different parameter combinations 

No. H1 No. H1 No. H1 No. H1 

1# 0.97 5# 1.48 9# 0.39 13# 0.35 

2# 0.71 6# 1.32 10# 0.57 14# 0.50 

3# 0.82 7# 0.38 11# 0.70 15# 0.45 

4# 1.22 8# 0.73 12# 0.61 16# 0.18 

 

Fig.6 16 sets of parameters for multi-layer cladding experiments 

 

Table 5 Measurement results ofΔH and Ra for multilayer clad-

ding 

No. ∆H(mm) Ra(mm) No. ∆H(mm) Ra(mm) 

1# 2.3442 0.3145 9# 0.9551 0.0825 

2# 1.0478 0.2003 10# 1.4096 0.1104 

3# 0.8859 0.1395 11# 1.4056 0.1369 

4# 3.7846 0.1372 12# 0.8691 0.1128 

5# 3.4965 0.2191 13# 2.8770 0.1309 

6# 3.5757 0.1538 14# 0.0343 0.0974 

7# 1.1789 0.1130 15# 2.7508 0.1331 

8# 0.5584 0.2102 16# 1.8251 0.0850 

 

Extract the printed part’s top layer point cloud model and 

perform the plane fitting. As shown in Fig.7, calculate the dis-

tance from the plane to the substrate as the actual printing 

height and subtract it from the theoretical height to get the 

height error. Calculate the distance from all points of the top 

layer point cloud to the plane and calculate the average value, 

which is the surface roughness of the printed part. When con-

ducting experimental measurements, high-precision measuring 

equipment was used to ensure the accuracy of the measured 

data. The possible error range when characterizing roughness 

is the measurement error caused by the equipment, which is 

less than 0.01mm. 

Fig.7 Result of the top layer plane fitting of the printed part 

 

2.2 Calculation of the SNR for each response and 

Taguchi analysis 

SNR is introduced as an evaluation index. According to 

specific requirements, the SNR characteristics are divided into 

larger, smaller, and nominal values, corresponding to the tar-

get values of maximizing, minimizing, and reaching or ap-

proaching the quality response. Eq.(2)-Eq.(4) presents the 

calculation formula. 
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where SNR is the quality characteristic, n is the number of 

experiments, m is the experimental target value, and yi is the 

experimentally measured data. The responses ∆H and Ra are 

as small as possible. Thus, Eq.(3) is employed to calculate the 

SNR of these two responses. Table 6 lists the SNR corre-

sponding to each group of experiments. 

 

Table 6 SNR of response targets 

No. ∆H(mm) Ra(mm) No. ∆H(mm) Ra(mm) 

1# -7.400 10.046 9# 0.4399 21.670 

2# -0.406 13.964 10# -2.982 19.138 

3# 1.052 17.110 11# -2.957 17.271 

4# -11.560 17.252 12# 1.219 18.952 

5# -10.873 13.187 13# -9.179 17.660 

6# -11.067 16.261 14# 29.294 20.227 

7# -1.430 18.938 15# -8.789 17.517 

8# 5.061 13.549 16# -5.226 21.414 

 

The mean SNR values for each level are calculated using 
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Eq.(5) to assess the effect of different factor levels on the 

blade surface properties. The factor level yielding the highest 

mean SNR indicates the optimal level for that particular fac-

tor. 

( )
1

1 k

xi i

i

R SNR
k =

= 
 

 (5) 

where Rxi is the mean value of the SNR corresponding to each 

factor level, SNRi is the SNR containing the associated level, 

and k is the number of experiments. 

Table 7 Response table of SNR for ∆H and Ra 

Level 
∆H(mm) Ra(mm) 

LP PR SD SS LP PR SD SS 

1 -3.66 4.17 -3.66 -4.15 18.35 19.52 13.93 15.83 

2 3.01 0.16 -5.49 -7.50 16.37 16.97 16.15 16.73 

3 -3.40 -8.52 -1.08 8.11 17.39 16.56 19.26 17.51 

4 -4.66 -4.52 1.53 -5.17 16.43 15.49 19.20 18.47 

Delta 7.67 12.70 7.02 15.61 1.97 4.04 5.33 2.64 

Rank 3 2 4 1 4 2 1 3 

 

The extreme deviation is the difference between the highest 

and lowest average response values of the factor level’s SNR. 

It quantifies the relative impact of different factor levels on 

experimental outcomes. The larger the extreme deviation, the 

more significant the influence of that factor. Table 7 shows 

each level’s average SNR value responses for various aspects. 

Fig.8 illustrates the trends in SNR for each factor along with 

the two corresponding responses ∆H and Ra. The SNR analy-

sis reveals that the optimal parameters for obtaining the min-

imum ∆H and Ra are LP1PR1SD3SS4 and LP2PR1SD4SS3, 

respectively. 

According to the ranking analysis results of SNR, each 

process parameter influences the height error ∆H of the top 

layer: SS > PR > LP > SD. For the cladding layer height, 

scanning speed is the most influential factor. If the scanning 

speed is too slow, the prolonged residence of the laser head in 

the molten pool leads to an increased transfer of heat energy to 

either the substrate or the pre-ceding cladding layer, resulting 

in a progressively higher cladding layer height that surpasses 

its theoretical value. If the scanning speed is excessively high, 

the nozzle injects a reduced amount of metal powder into the 

molten pool, diminishing the heat energy transferred to the 

powder. As a result, the cladding layer height is less than its 

theoretical value. Therefore, selecting an appropriate scanning 

rate can mitigate height errors and improve the quality of the 

printed part. 

According to the ranking analysis results of SNR, each 

process parameter influences the surface roughness Ra of the 

top layer: SD > PR > SS > LP. The roughness of the top sur-

face is mainly affected by the overlap ratio, which is the pa-

rameter moving step distance selected in this paper. When the 

step distance is too small, the overlap area between the clad-

ding layers increases, which may cause excessive material to 

accumulate in a specific area, resulting in protrusions or wavy 

shapes on the surface and increasing the surface roughness. In 

addition, the heat is concentrated in the overlapping area, 

which may cause thermal deformation or burning of the clad-

ding material, resulting in microcracks or defects, further in-

creasing the roughness. When the step distance is too large, 

due to the failure of the cladding material to fully cover, the 

overlap between the cladding layers is insufficient, which may 

cause local areas to fail to fuse fully, resulting in local weak 

areas, resulting in an uneven surface, thereby increasing the 

roughness. In addition, insufficient overlap may cause the 

bonding strength between the cladding layers to decrease, and 

peeling or flaking may occur easily, affecting the overall flat-

ness of the surface. This is consistent with the conclusions of 

existing research work[36]. Choosing a suitable overlap rate, 

that is, the step distance, can make the surface unevenness of 

the workpiece flat, thereby significantly reducing its rough-

ness. 

Fig.8 Main effect plot for the SNR analysis of responses:(a) ∆H, (b) 

Ra 

 

2.3 Multi-objective optimization by grey relational 

analysis 

The Taguchi method is a single-objective response optimi-

zation method, while this paper aims to optimize two objec-

tives simultaneously. Therefore, the grey correlation theory is 

introduced for multi-objective optimization to determine the 

optimal laser cladding parameters. The grey correlation theory 

effectively integrates multiple targets into one objective by 

converting individual responses into grey relational grades 

(GRG)[37]. 

Grey relational analysis requires a series of calculations[38]. 
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The first is data normalization. Since each response’s numeri-

cal range and unit are different, it is necessary to normalize it. 

Eq.(6) is calculated so that the data is between 0 and 1, and its 

scale remains unchanged. The normalized results are shown in 

Table 8. 

( ) min ( )
( )

max ( ) min ( )

i i
i

i i

Y k Y k
X k

Y k Y k

−
=

−
  (6) 

where Yi(k) is the SNR for the response k (k = 1, 2) of experi-

ment i (i = 1, 2, ..., 16), max Yi(k) and min Yi(k) is the maxi-

mum and minimum value of the response k among all 16 ex-

periments, Xi(k) is the normalized value of the experiment i 

and response k. 

 

Table 8 The normalized SNR value of response targets 

No. ∆H(mm) Ra(mm) No. ∆H(mm) Ra(mm) 

1# 0.102 0.000 9# 0.293 1.000 

2# 0.273 0.337 10# 0.210 0.782 

3# 0.309 0.608 11# 0.211 0.622 

4# 0.000 0.620 12# 0.313 0.766 

5# 0.017 0.270 13# 0.058 0.655 

6# 0.012 0.535 14# 1.000 0.876 

7# 0.248 0.761 15# 0.068 0.643 

8# 0.407 0.301 16# 0.155 0.978 

 

Then, the grey relational coefficient (GRC) is calculated by 

Eq.(7)[38]. 
0 0

0 0

min ( ) max ( )
( )

( ) max ( )

i i i i i i

i

i i i i i

x x k x x k
GRC k

x x k x x k





− + −
=

− + −
  (7) 

where GRCi(k) is the GRC for the response k (k = 1, 2) of ex-

periment i (i = 1, 2,..., 16), xi
0 is the ideal value of experiment i 

(i = 1, 2, ..., 16) and satisfies xi
0 = 1 in this work, ξ is the dis-

tinguishing coefficient over the range 0 < ξ < 1. In this study, 

we set ξ = 0.5 by comprehensively considering effect and sta-

bility[16]. GRC is the relationship between the actual normal-

ized SNR and the ideal values, where the ideal values are all 

1000. Finally, the integrated GRG calculation using Eq.(8)[38]. 

1

1
( )

n

i i

k

GRG GRC k
n =

=    (8) 

where GRGi is the GRG of experiment i (i = 1, 2, ...,16), n is 

the number of the responses, and n = 2 in this work. Eq.(8) 

can equally weigh the importance of ∆H and Ra. 

Each process parameter’s grey correlation coefficient and 

correlation level are calculated, as shown in Table 9. We in-

troduced the Taguchi method into the grey correlation analysis 

to obtain a parameter combination with good printing quality. 

Fig.9 shows the central effect diagram of GRG. According to 

the study, the best process parameter combination is 

LP1PR1SD3SS3. The laser power is 800 W, the powder feed-

ing speed is 0.3 r/min, the step distance is 1.6 mm, and the 

printing speed is 20 mm/s. 

 

 

Table 9 Grey relational analysis data table for responses 

No. 
GRC GRG 

No. 
GRC GRG 

∆H Ra Values Rank ∆H Ra Values Rank 

1# 0.358 0.333 0.345 16 9# 0.414 1.000 0.707 2 

2# 0.408 0.430 0.419 14 10# 0.388 0.679 0.542 5 

3# 0.420 0.560 0.490 7 11# 0.388 0.569 0.478 8 

4# 0.333 0.568 0.451 11 12# 0.421 0.681 0.551 4 

5# 0.337 0.407 0.372 15 13# 0.347 0.592 0.469 9 

6# 0.336 0.518 0.427 13 14# 1.000 0.801 0.814 1 

7# 0.399 0.680 0.540 6 15# 0.349 0.583 0.466 10 

8# 0.457 0.417 0.437 12 16# 0.372 0.958 0.665 3 

Fig.9 Main effect plot for the SNR analysis of GRG. 

 

Table 10 Response table for SNR of GRG 

Level LP PR SD SS 

1 0.559 0.628 0.424 0.485 

2 0.534 0.518 0.447 0.460 

3 0.492 0.453 0.570 0.571 

4 0.459 0.448 0.604 0.528 

Delta 1.434 2.846 2.958 1.707 

Rank 4 2 1 3 

 

In addition, Table 10 shows the factors' importance to the 

grey correlation degree as SD > PR > SS > LP. The step dis-

tance plays a leading role in the height error and roughness. 

 

2.4 Experimental verification of optimal parameters 

An additional verification experiment is necessary since the 

optimal parameter combination was not involved in the L(16)(4
4) 

experiment table. Eq.(9)[38] can predict grey relational grades. 

( )
1

n

p m j m

j

GRG GRG GRG GRG
=

= + −   (9) 

where GRGm is the mean value of total GRG, n is the number 

of process parameters and n = 4 in this work, GRGj is the 

mean value of all the GRG for processing parameter j (j = 

1,2,3,4) at the optimal level, GRGp is the predicted GRG at the 

selected level. 

At the optimal process parameters, the predicted value of 

GRG is 0.828. Comparing the results of the single-target re-

sponse of ∆H and Ra with the grey correlation method analy-

sis results, it can be seen that the prediction results of GRGPre 
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and the experimental calculation result in GRGExp are con-

sistent in size trend, as shown in Table 11. It is further ex-

plained that the parameters obtained by the grey correlation 

analysis of multi-target response are optimal. 

 

Table 11 Comparison of single-target response and multi-target 

response results 

Level ∆H Ra ∆H + Ra 

LP(W) 800 900 800 

PR(r/min) 0.3 0.3 0.3 

SD(mm) 1.4 1.6 1.6 

SS(mm/s) 22 20 20 

GRGExp 0.719 0.721 0.807 

GRGPre 0.751 0.804 0.828 

 

2.5 Multi-objective prediction based on GB-BP network 

Due to the complexity of the metal LDED process and the 

inherent variability in product requirements, it is not advisable 

to conduct individual experiments. Therefore, a mapping rela-

tionship between process parameter combinations and re-

sponses should be established based on a few samples. Artifi-

cial Neural Network (ANN) is a computational model miming 

biological neural networks[39]. Its architecture includes an in-

put layer that receives input data, multiple hidden layers that 

process and extract features from the input data, and an output 

layer that generates the final result. The BP network is the 

most widely used ANN model[40]. The back-propagation algo-

rithm optimizes the network’s weights and biases to improve 

the model’s accuracy. The structural diagram is shown in 

Fig.10. This method establishes the correlation between input 

process parameters (laser power, powder feeding rate, step 

distance, scanning speed) and output parameters (surface 

roughness, height difference). 

Fig.10 BP network topology diagram 

 

The appropriate number of neurons enhances the network’s 

prediction accuracy. Bayesian optimization (BO) determines 

the optimal configuration, including hidden layers, neurons, 

and network learning rate[41]. BO constructs a Gaussian pro-

cess probability model to represent the possible distribution of 

the objective function.  

 

 

 

 

Table 12 The parameters of the BP network 

Parameters Value 

Activation function Sigmoid 

Optimizer Adam 

Epochs 600 

Learning rate 0.027 

The number of hidden layers 2 

Number of nodes in the first hidden layer 10 

Number of nodes in the second hidden layer 6 

  

The model is updated by randomly selecting a set of points 

to be evaluated. From there, new evaluation points are identi-

fied and added to the model for iteration. Repeat the above 

process until reaching the maximum number of iterations or 

converging to a predetermined level of accuracy. The parame-

ters of the BP network we selected are shown in Table 12. The 

initial 14 data sets from Table 5 are the training set, and the 

last two are the testing set. RMSE is used to evaluate network 

performance, as shown in Eq.(10). 

( )
2

1

1 ˆ
n

i i

i

RMSE Y Y
n =

= −   (10) 

where n is the number of samples, 
iY is the ground truth for 

each data set, and ˆ
iY  is the predicted output of the network. 

Fig.11 The loss function curve of the BP network 

 

Fig.11 illustrates the loss function curve. The prediction re-

sults are shown in Fig 13(a) and (b). The relative prediction 

errors of ∆H and Ra were calculated to be 51% and 21%, re-

spectively, as shown in Table 14. The relative error of ∆H is 

higher than 50%, indicating that its prediction performance is 

not ideal. The BP network is prone to fall into the local opti-

mum, resulting in an unsatisfactory training effect. In addition, 

overfitting will occur when the training data is insufficient, 

decreasing the model’s generalization ability for new data. 

GA mimics the natural process of biological evolution, em-

ploying selection, crossover, and mutation operations to 

search for optimal solutions. It initializes a population to ex-

plore the solution space to handle multiple problems and op-

timize multiple parameters simultaneously[42]. Consequently, 

the GA was introduced as a replacement for the backpropaga-
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tion process in the BP network, enabling accurate prediction 

of multiple responses[44]. The algorithm flowchart is shown in 

Fig.12. The weights and biases of the BP network are encoded 

as chromosomes, with their values constrained within [−1,1]. 

The fitness function is the mean square error (MSE), denoted 

by Eq.(11). The GB-BP parameters were determined through 

experiments, as shown in Table 13. 

 

Fig.12 The flow chart of the GB-BP network 

( )
2

1

1 ˆ
n

i i

i

MSE Y Y
n =

= −   (11) 

where n is the number of test sets, 
iY  is the ground truth and 

ˆ
iY  is the network predict value. 

 

Table 13 The parameters of the GB-BP network 

Parameters Value 

Coding method Real number coding 

Max iteration 6000 

Population size 80 

Elite ratio 0.06 

Parents portion 0.5 

Crossover probability 0.54 

Mutation probability 0.01 

Crossover type Uniform 

Number of nodes in the first hidden layer 10 

Number of nodes in the second hidden layer 6 

 

Similarly to the BP network, we selected the first 14 data 

sets from Table 5 as the training set and the last two as the 

testing set. Fig.13 illustrates the loss function curve. It can be 

seen that the loss function is much smoother than that of the 

BP network. This is because, after the introduction of GA, BP 

can adjust the network weights according to the gradient based 

on GA optimization to fine-tune the model and avoid loss 

fluctuations caused by overfitting. Secondly, GA does not rely 

on the learning rate. It determines the direction and amplitude 

of weight updates through the evolution process, which makes 

the training process more stable. Fig.14(c) and (d) show the 

GB-BP network’s prediction results. The relative prediction 

errors of ∆H and Ra were calculated to be 29% and 6%, re-

spectively, as shown in Table 14. The results show that the 

prediction error of δh is larger than that of Ra. The main rea-

son is that compared with Ra, the response of ΔH has a small-

er correlation coefficient with several process parameters 

mentioned in the paper. In addition, the prediction of the net-

work itself is based on a small sample training model. If the 

number of samples in the training set is appropriately in-

creased, the prediction accuracy will be improved to a certain 

extent. 

Fig.13 The objective function curve of the GB-BP network 

 

Table 14 Comparison of relative error between BP network and 

GB-BP network prediction results. 

 Ra (mm) ∆H (mm) 

BP    GB-BP GB    GB-BP 

Relative error 51%     29% 21%     6% 

 

It is evident that compared to the BP network, the relative 

error of GB-BP network prediction is significantly reduced, 

and the prediction accuracy is greatly improved. Compared 

with the traditional BP network, the GB-BP network has im-

proved the accuracy of predicting ∆H and Ra by 43.14% and 

71.43%, respectively. 

 

Table 15 GB-BP network cross-validation results 

No. 
Relative error 

No. 
Relative error 

∆H Ra ∆H Ra 

1# 40% 19% 5# 44% 18% 

2# 37% 19% 6# 64% 13% 

3# 26% 19% 7# 38% 18% 

4# 33% 29% 8# 52% 18% 

 

The k-fold cross-validation method was used to verify the 

generalization ability of the GB-BP network [43]. The data was 

divided into eight folds, each containing two data groups. 

Every time, seven folds (fourteen groups of data) were used 

for training, and one fold (two groups of data) was used for 
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verification, totaling eight training and verification. The re-

sults are shown in Table 15. The results show that the average 

relative error of the GB-BP network in predicting ∆H is 42%, 

and the average relative error of the GB-BP network in pre-

dicting Ra is 19%, much smaller than the prediction results of 

the BP network. It is proved that the GB-BP network can ac-

curately predict multiple responses and has good generaliza-

tion ability. 

 

 

 

Fig.14  Comparison between the results predicted by BP and GB-BP networks. (a) The BP network predicts the value of ∆H  (b) The BP net-

work predicts the value of Ra  (c) The GB-BP network predicts the value of ∆H  (d) The GB-BP network predicts the value of Ra. 

 

3 Conclusions 

This paper used the Taguchi method to study the effects of 

process parameters such as laser power, powder feeding rate, 

step distance, and scanning speed on the height error and sur-

face roughness of printed parts through signal-to-noise ratio 

analysis. Grey correlation analysis was used to achieve syn-

chronous multi-objective optimization, and a GB-BP network 

model was established to predict multi-objective responses. 

The conclusions of the research are as follows: 

(1). Build a visual inspection system and calculate the 

height error and surface roughness between the point cloud 

model of the printed part and the theoretical model through 

collection and analysis as performance parameters to charac-

terize the surface morphology quality of the printed part. 

(2). Through Taguchi experiments and SNR analysis, the 

impact of process parameters on the individual response of 

H is SS > PR > LP > SD. The effect on the individual re-

sponse of Ra  is SD > PR > SS > LP. The influence of pro-

cess parameters on the multi-objective response obtained us-

ing the grey relational analysis method is SD > PR > SS > LP. 

The optimal parameter combination was determined to be 

LP1PR1SD3SS3. That is to say, the laser power is 800 W, the 

powder feeding rate is 0.3 r/min, the step distance is 1.6 mm, 

and the scanning speed is 20 mm/s. 

(3). Considering the multifactorial characteristics of the 

metal powder LDED process, the GB-BP network was de-

signed to predict the H and Ra of printed parts to improve 

manufacturing efficiency. The BO algorithm determines the 

ideal number of hidden layers and nodes for the BP network, 

while GA replaces the backpropagation process to improve its 

performance. Through experimental verification, the GB-BP 

network significantly improves prediction accuracy compared 

to the traditional BP network, with H and Ra  prediction 

accuracy increasing by 43.14% and 71.43%, respectively. 

The following research will focus on expanding the dataset 

and refining the network, aiming to improve the accuracy of 

multi-target response in multi-layer and multi-pass metal 

printed parts. 
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摘  要：表征多层多道次激光金属打印件形貌质量的主要参数是表面粗糙度和实际打印高度与理论模型高度之间的误差。本研究采用田

口法建立工艺参数组合与金属打印形貌质量（高度误差和粗糙度）多目标表征之间的关联性。采用信噪比和灰色关联分析法预测多层多

道次打印的最优参数组合：激光功率 800 W、送粉速率 0.3 r/min、步距 1.6 mm、扫描速度 20 mm/s。随后，构建遗传贝叶斯-反向传播

网络（GB-BP）对多目标响应进行预测。与传统 BP 网络相比，GB-BP 网络对高度误差和表面粗糙度的预测精度分别提高了 43.14%和

71.43%，该网络可以准确预测多层多道次 LDED 金属打印部件的形貌和质量的多目标表征。 

关键词：多层多道次激光熔覆；田口法；灰色关联分析；GB-BP网络 
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