氢化 TiCr_{1.8-x}V_x 合金的相组成及放氢性能研究

黄太仲¹,王建立²,吴 铸³,徐乃欣³,江诗雄²,谢志成²

(1. 济南大学,山东 济南 250022)(2. 山东神工超量科技有限公司,山东 枣庄 277800)(3. 中科院上海微系统与信息技术研究所,上海 200050)

摘 要:采用 X 射线衍射(XRD)法分析了 TiCr_{1.8x}V_x储氢合金氢化并吸氢后的相组成,首次采用热重-差热扫描-质谱 (TG-DSC-MS)联用技术对合金随温度变化时的放氢特性及所释放氢的状态进行了研究。根据不同升温速率条件下,合 金放氢的 DSC 测试计算了放氢反应的活化能。

关键词: 储氢合金; XRD; TG-DSC-MS; 相组成

中图法分类号: TG146.2+3

文献标识码: A

文章编号: 1002-185X(2009)01-0050-04

TiCr基储氢合金由于其较高的储氢容量在近年来 一直受到人们的极大关注,为了改善该合金的吸放氢 性能和工作条件,已有多种合金化元素被用来对其进 行改性。结果表明,Mn取代合金中的部分Cr后,合 金的活化性能得到改善,但储氢量有所降低^[1];Mo、 Zr等元素也可以改善合金的活化性能,提高合金的吸 氢量^[2-4];V 作为最有效的合金化元素之一,对TiCr 基储氢合金的改性研究也有许多报道^[5-8]。

到目前为止,对储氢合金的研究主要集中在采用 不同元素对合金进行改性,以及研究不同合金化元素对 储氢合金的相组成及吸氢性能的影响,但对储氢合金的 放氢性能,尤其是在高温条件下的放氢性能,并没有给 予太多的关注。储氢合金活化吸氢后,合金的相组成一 般会发生氢致相变。本研究在对铸态 TiCr_{1.8-x}V_x合金研 究的基础上,进一步对合金活化吸氢后的相组成以及高 温条件下合金的放氢性能进行了研究。

1 实 验

按比例称量 TiCr_{1.8-x}V_x(x=0.2, 0.4, 0.6, 0.8, 1.0) 合 金中各组分, Ti、Cr、V 的纯度均大于 99.5%。在氩 气气氛保护下于磁感应悬浮熔炼炉中将原料反复熔炼 4 次,得到组分均匀的合金。将合金完全活化后,于 1×10⁵ Pa 的压力下充分吸氢,取 2 g 试样,进行 XRD 测试,使用 Philips 公司制造的 X'Pert-MPD 型 X 射线 扫描衍射仪,Cu Kα (λ =0.15406 nm)辐射、石墨单色 滤波器,采用连续扫描,扫描速度为 0.24°/min, 2 θ 的 分辨率为 0.0002°, 扫描范围为 15°~85°, 测试结果经 专用软件分析处理后输出。取约 30 mg 试样在德国 Netzsh 公司生产的 STA 449C 联用分析仪上对放氢合 金进行热重-差热-质谱测试,升温速度为 10 K/min, 测试气氛为 40 mL/min 的 Ar 气。

2 结果与讨论

2.1 充分活化吸氢后 TiCr_{1.8-x}V_x 合金的相组成

充分活化吸氢后 TiCr_{1.8-x}V_x 合金的 XRD 图谱见 图 1。

与铸态 TiCr_{1.8-x}V_x合金的相组成^[1]比较可以发现, 合金 TiCr1.6V0.2 的相组成由铸态的 Laves 相与 BCC 相 共存转变为单一具有立方结构的 C15 Laves Ti1.07Cr1.93 相,合金中的 V 基 BCC 相彻底消失了,这可能是由于 在吸氢过程中合金中的原子发生了相对位移,从而使合 金的结构发生改变,导致 V 基 BCC 相溶于 C15 Laves 相中。合金 TiCr1.4V0.4 在氢化后的主要相组成为正交(斜 方)晶系 TiCr_{1.8}H_{3.42}相,同时在合金中还检测到了 V 基 BCC相,这是由于合金在吸氢过程中发生了V基BCC 相与 TiCr_{1.8}H_{3.42}相的偏析,从而导致合金中部分 V 基 BCC 相合金由合金的母体中分离出来。合金 Ti $Cr_1 > V_{06}$ 、 TiCr_{1.0}V_{0.8} 和 TiCr_{0.8}V_{1.0} 在氢化后的主要组成相均以 TiCr_{1.8}H_{5.3}为主,各合金的相组成及对应的晶胞参数见 表 1。另外,在合金 TiCr_{1.2}V_{0.6}、TiCr_{1.0}V_{0.8}和 TiCr_{0.8}V_{1.2} 合金中还检测到了 TiH₂相, TiH₂相的含量随 V 含量的 增加而逐渐减少,V 含量的增加,抑制了合金中 TiH?

收稿日期: 2008-01-20

基金项目:国家高技术研究发展计划(2003AA515022)和济南大学博士基金(B0525)资助项目

作者简介: 黄太仲, 男, 1972年生, 博士, 济南大学, 山东 济南 250022, 电话: 0531-82765955, E-mail: chm_huangtz@ujn.edu.cn

相的偏析。由于 TiH₂相和 V 基 BCC 相的量较少,其 衍射强度相对较弱,所以不利于准确标识,故在图 1 中没有标出这两相。合金的相组成在吸氢后发生了转 变,在 TiMn 系储氢合金的研究中也发现过类似的现 象^[9,10]。储氢合金吸放氢前后相组成的改变,也称为氢 致相变^[6]。

图 1 充分活化吸氢后 TiCr_{1.8-x}V_x 合金的 XRD 图谱

Fig.1 XRD patterns of fully activated and hydrogenated TiCr_{1.8-x}V_x alloys

表 1 充分活化吸氢后 $TiCr_{1.8-x}V_x$ 合金的相组成

Table 1 Phase compositions of hydrogenated $TiCr_{1.8-x}V_x$ alloys

Alloys	Main phase	Cell	Minor
	1	parameters/nm	phase
$TiCr_{1.6}V_{0.2} \\$	Cr _{1.97} Ti _{1.07} C15	a = 0.7067	
$TiCr_{1.4}V_{0.4}$	$TiCr_{1.8}H_{3.42}$	a=0.7308	V base
	rhombic	b = 0.5142	BCC phase
		c = 0.4951	
$TiCr_{1.2}V_{0.6}$	TiCr _{1.8} H _{5.3} BCC	a = 0.4271	TiH_2
$TiCr_{1.0}V_{0.8} \\$	TiCr _{1.8} H _{5.3} BCC	a = 0.4286	TiH_2
$TiCr_{0.8}V_{1.0}$	TiCr _{1.8} H _{5.3} BCC	<i>a</i> = 0.4295	TiH_2

由表 1 可见, TiCr_{1.8}H_{5.3}相的晶胞参数随合金中 V 含量的增加而增大。这主要是由两方面原因造成的。 第一,随合金中 V 含量的增加,合金与氢的结合力也 逐渐增大,合金的吸氢量增加,因此进入晶胞内部的 氢量增加,这也导致合金晶胞增大的程度增加^[8];第 二,由于 V 原子的原子半径大于 Cr 原子,所以随 V 含量的增加相应合金的晶胞参数也逐渐增大;在二者 的共同作用下,TiCr_{1.8}H_{5.3}相的晶胞参数随合金中 V 含量的增加而增大。

2.2 氢化 TiCr_{1.8-x}V_x 合金的放氢 TG-DSC 测试

储氢合金的放氢性能是关系到储氢合金实际应用的决定性因素,储氢合金的放氢性能既取决于合金的本性,也受到外界条件的影响。为了考察 TiCr_{1.8-x}V_x

合金的完全放氢条件,将充分活化后的合金分别进行 TG-DSC 测试,其结果见图 2。

Fig.2 Results of TG-DSC tests of fully hydrogenated $TiCr_{1.8-x}V_x$ alloys

TG 曲线表明了测试过程中合金的失重即放氢量 与温度的关系,而 DSC 曲线则反应了放氢过程中合金 与环境之间的热量交换。由图 2 可见,合金中 V 含量 的增加,合金的放氢量逐渐增加。当x=0.2时,合金 的放氢量仅有 1.76%,但当x=1.0时,合金的放氢量 高达 3.0%。比较不同合金的 TG 测试曲线可见,随温 度的逐渐升高,不同合金具有不同的失重速率。总体 来看,合金的最大失重速率对应的温度,即 TG 曲线 对应的斜率最大部分相应的温度,随合金中 V 含量的 增加而逐渐升高。

不同合金的 DSC 曲线相比较可见,除 TiCr_{1.4}V_{0.4} 合金外,合金 DSC 曲线吸热峰所对应的放氢温度随合 金中 V 含量的增加而升高,该吸热峰与 TG 曲线上斜 率最大部分相对应。这是由于合金中 V 含量的增加使 合金与氢的结合能增加,抑制了合金中氢的放出,只 有当温度升高到一定值时,合金中的氢才能被释放出 来^[6]。合金中不同相的存在也有利于合金中氢的释放。 由 XRD 结果可知,合金中的 TiH₂相的含量随合金中 V 含量的增加而减少,这也降低了合金的放氢性能^[4]。

2.3 TG-DSC 的合金放氢动力学研究

根据不同升温速率下的 DSC 测试结果可以进行化 学反应的动力学分析^[11,12]。利用 Ozawa 方法计算金属 氢化物分解反应的活化能为:

$$E = 2.19R \frac{d\log\Phi}{d1/T}$$

式中, ϕ 为加热时的升温速率,T为 DSC 曲线吸热峰 对应的温度,E为反应活化能,R为气体常数。合金 TiCr_{1.2}V_{0.6}和TiCr_{1.0}V_{0.8}在不同升温速率下的DSC测试 曲线见图 3。

由图 3 可见,随着升温速率的提高,DSC 曲线吸 热峰对应的温度升高。随着升温速率的增加,合金 DSC 测试的吸热峰对应的放氢温度也升高,根据合金在不 同升温速率下 DSC 的测试结果,可以计算得出合金 TiCr_{1.2}V_{0.6}和 TiCr_{1.0}V_{0.8}的放氢活化能分别为 99.32 和 100.74 kJ/mol。

据此可以推断,随着合金中 V 含量的增加,合金 放氢时的活化能也逐渐增加,正是由于合金放氢活化 能的升高使 DSC 曲线对应的吸热峰的温度升高。随着 合金中 V 含量的增加,合金与氢的结合能增加,所以 金属氢化物分解所需的能量增加,即合金放氢反应的 活化能增加。

2.4 放氢过程气体的质谱分析

考虑放氢过程中氢的状态,将合金放氢过程的质量数(*m*/*z*)设置为1、2、3,则合金TiCr_{1.0}V_{0.8}放氢过程的质谱测试结果见图4。

- 图 3 合金 TiCr_{1.2}V_{0.6}和 TiCr_{1.0}V_{0.8}在不同升温速率下的 DSC 曲线
- Fig.3 DSC curves of alloys $TiCr_{1.2}V_{0.6}$ (a) and $TiCr_{1.0}V_{0.8}$ (b) at different heating rate

Fig.4 Mass spectroscopy of dehydrogenation of TiCr_{1.0}V_{0.8} alloy: (a) m/z=1, (b) m/z=2, and (c) m/z=3

由图 4 可见,合金 TiCr_{1.0}V_{0.8} 放氢过程中所释放 的氢分别以原子状态、分子状态和质量数为 3 的状态 存在,可以推断,质量数为 1 的为单原子氢,质量数 为 3 的物质为一个氢分子与一个氢原子的组合状态。 单原子以及三原子状态的氢相对双原子氢分子具有更 高的活性^[13]。如果燃料电池的氢源采用金属储氢合金 的方式供氢,则可以适当减少燃料电池中催化剂的用 量,而且有利于燃料电池的启动,从而迅速达到稳定 运行的状态。比较各物质的相对强度可以发现,以分 子状态存在的氢浓度比单原子状态和三原子状态氢的 浓度高 1~3 个数量级。

3 结 论

 TiCr_{1.8-x}V_x合金氢化后的相组成随合金中 V 含量的改变而改变,当 V 含量超过一定比例时,合金以 TiCr_{1.8}H_{5.2}相为主,同时含有少量的 TiH₂相。

2) 随 V 含量的增加,合金的放氢量增加,吸热峰 对应的温度升高。

3) 放氢反应的活化能也随合金中 V 含量的增加 而升高。

4)储氢合金所释放的氢不仅以分子状态存在,同时也以单原子和三原子状态存在。

参考文献 References

 Huang Taizhong, Wu Zhu, Xia Baojia et al. Material Science and Engineering A[J], 2005, 397: 284

- [2] Yeh M T, Beibutian V M, Hsu S E. Journal Alloys and Compounds[J], 1999, (293-295): 721
- [3] Huang Taizhong(黄太仲), Wu Zhu(吴 铸), Xu Naixin(徐乃 欣). The Chinese Journal of Nonferrous Metals(中国有色金 属学报)[J], 2006, 16(11): 1855
- [4] Huang Taizhong(黄太仲), Wu Zhu(吴 铸), Feng Shanglong (冯尚龙)*et al. The Chinese Journal of Nonferrous Metals*(中 国有色金属学报)[J], 2005, 15(1): 141
- [5] Santos DSD, Bououdina M, Fruchart D. Journal of Alloys and Compounds[J], 2002, 340: 101
- [6] Takuya Tamura, Takashi Kazumi, Atsunori Kamegawa et al. Journal Alloys and Compounds [J], 2003, 356~357: 505
- [7] Xinhua Wang, Rugan Chen, Yan Zhang et al. Journal Alloys and Compounds[J], 2006, 420(1~2): 322
- [8] Klyamkin S N, Kovriga A Y, Verbetsky V N. Int J Hydrogen Energy[J], 1999, 24: 149
- [9] Sung-Wook Cho, Hirotoshi Enoki, Toshiki Kabutomori, Journal Alloys and Compounds[J], 2001, 319: 196
- [10] Mouri T, Iba H. Materials Science and Engineering A [J], 2002, (329~331): 346
- [11] Takeo Ozawa. Thermochimica Acta[J], 2000, 356: 173
- [12] John J R, Sanders P, Patrick Gallagher K. Thermochimica Acta[J], 2002, 388: 115
- [13] Lu Changwei(陆昌伟), Xi Tonggeng(奚同庚). Thermal Analysis Mass Spectroscopy (热分析质谱法)[M]. Shanghai: Shanghai Science and Technology Documentary Press, 2002: 40

Phase Composition and Hydrogen Desorption Characteristics of Hydrided TiCr_{1.8-x}V_x Alloys

Huang Taizhong¹, Wang Jianli², Wu Zhu³, Xu Naixin³, Jiang Shixiong², Xie Zhicheng² (1. University of Jinan, Jinan 250022, China)

(2. Shandong Shengong Chaoliang Science Technology Co., Ltd., Zaozhaung 277800, China)

(3. Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai 200050, China)

Abstract: The phase compositions of hydrided $\text{TiCr}_{1.8-x}V_x$ hydrogen storage alloys were examined by X-ray diffraction (XRD) and thermal gravity-differential scanning calorimetry-mass spectrometry (TG-DSC-MS) firstly to study the dependence of hydrogen desorption characteristics with temperature, and the states of released hydrogen were inspected by the mass spectrometry. The active energy of hydrogen desorption was calculated at different heating rates by the differential scanning calorimetry tests.

Key words: hydrogen storage alloys; XRD; TG-DSC-MS; phase composition

Biography: Huang Taizhong, Ph.D., Jinan University, Jinan 250022, P. R. China, Tel: 0086-531-82765955, E-mail: chm_huangtz@ujn.edu.cn