化学溶液沉积制备涂层导体 Eu_{0.3}Ce_{0.7}O_{1.85-x} 单一缓冲层

孙瑞萍,李 果,蒲明华,王文涛,张 欣,武 伟,杨 烨,赵 勇 (西南交通大学 材料先进技术教育部重点实验室,四川 成都 610031)

摘 要:采用高分子辅助化学溶液沉积 (PACSD) 方法,在双轴织构的 NiW (200)合金基底上沉积了厚度大于 160 nm 的 Eu_{0.3}Ce_{0.7}O_{1.85-x}(ECO)单一缓冲层。制得的 ECO 缓冲层双轴织构良好,表面平整、无裂纹。同时,Eu 的掺杂提高了 CeO₂单一缓冲层薄膜的临界厚度。在沉积了 ECO 缓冲层的 NiW 基带上外延生长的 YBCO 薄膜,超导零电阻转变温度 T_{c0}=86 K,临界电流密度达到 J_c(0 T, 77 K)=0.4 MA/cm²。本研究提供了一种操作简单、成本低廉、性能优良的制备涂层导体单一缓冲层的方法。

关键词: Eu 掺杂; CeO2单一缓冲层; 高分子辅助化学溶液沉积(PACSD)

中图法分类号: O484.1; O484.5; O511⁺.3 文献标识码: A 文章编号: 1002-185X(2009)03-0523-04

自高温超导体发现以来,以制备高性能的 YBCO 涂层导体为目的的研究工作在世界范围内广泛开 展^[1~3]。然而,到目前为止,人们仍在极力探索二代 带材稳定的制备工艺,尤其是对双轴织构缓冲层的制 备。为了外延生长出性能良好的 YBCO 涂层导体, 人们研究了许多缓冲层材料,比如 SrTiO₃^[4,5]、 $La_2Zr_2O_7^{[6,7]}$ 、 CeO₂^[8,9]、 YSZ^[10]、 RE₂O₃^[11,12] 和 REBiO₃^[13,14]等等。CeO₂具有优良的化学稳定性,而 且与 YBCO 晶格匹配相对较好, 被公认是最具发展 前景的缓冲层材料。但是 CeO2 很少用来做单一的缓 冲层,主要原因是在化学溶液制备过程中,CeO2存 在一个约为 50 nm 的临界厚度。50 nm 缓冲层不足以 阻挡金属基带和 YBCO 超导层之间的相互扩散;而 超过临界厚度, CeO2薄膜就会产生微裂纹^[15], Ni 离 子很容易扩散到 YBCO 超导层, 这将极大地削弱超 导层的载流能力。为此,许多研究者把精力集中到研 究多层膜,诸如 CeO₂/YSZ/ Y₂O₃ 和 CeO₂/La₂Zr₂O₂^[7,16]。然而,多层膜在制备工艺上比单 一薄膜要复杂,成本也相对高得多,所以合适的单一 缓冲层仍是人们所追求的目标。

最近,有研究小组报道了一些制备CeO₂单一缓冲 层的新方法。Xiong^[17]等人通过物理沉积技术制备出 了300 nm无裂纹的CeO₂单一缓冲层,他们将金属Ce 沉积在Ni-W 基带上,经过氧化最后形成双轴织构的 CeO₂。另一种方法是在CeO₂中掺杂其它稀土元素, RE₂O₃ (RE = Sm、Eu等)的掺杂使CeO₂薄膜的临界厚 度可以超过100 nm。Ce和RE具有相类似的化学性质, 所以RE₂O₃和CeO₂ 形成的固溶体中的RE的比例可高 达 40% 。Brauer^[18] 等人报道了Sm_{0.4}Ce_{0.6}O_{1.8-x}和 Gd_{0.4}Ce_{0.6} O_{1.8-x}的粉体。Zeng^[19]等人采用MOCVD方 法,在NiW基带上制得了厚度约为800 nm的Sm-掺杂 的CeO₂(离子比Sm:Ce=1:4)单一缓冲层,其上外延生 长的YBCO超导层临界电流密度为 J_{c} (77 K, 0 T)= 0.5 MA/cm²。

常见的化学溶液沉积(CSD)法有金属有机物沉积 (MOD)法和溶胶-凝胶法,它们工艺简单、成本低,易 于大规模生产。很多研究小组采用CSD 法已经成功的 制备了CeO2缓冲层。但是到目前为止,还没有人报道 通过此类方法制备出临界厚度超过100 nm的CeO2单 一缓冲层。本实验采用一种新的经济实用的PACSD方 法^[20-22],在双轴织构的Ni-W基带上沉积Eu-掺杂的 CeO2 (ECO)单一缓冲层,以期得到性能优异的 Eu0.3Ce0.7O1.85-x薄膜。

1 实 验

将金属硝酸盐溶解于高分子有机物体系中制得胶体,浓度保持在0.3 mol/L左右。高分子有机物体系是 通过将聚丙烯酸或聚α-甲基丙烯酸溶于环己烷中搅拌 而成。双轴织构的Ni-W(100)带被裁成10 mm×10 mm 的小片作为基片。将胶体旋涂在小基片上,150 ℃干

收稿日期: 2008-03-11

基金项目:国家自然科学基金(50672078);国家杰出青年基金(50588201)和国家 "973"项目(2007CB616906)

作者简介: 孙瑞萍, 女, 1982 年生, 硕士生, 西南交通大学超导研究开发中心, 四川 成都 610031, 电话: 028-87600786; 通讯作者: 蒲明华, 电话: 028-87634848, E-mial: mhpu@home.swjtu.edu.cn

燥,之后放入烧结炉在500 ℃左右分解得到无定型的 金属氧化物,最后在Ar/5%H₂环境中退火15 min,退火 温度为900~1100 ℃。

对 ECO 和 YBCO 薄膜的膜厚、成分、微观表面 形貌、结晶取向以及 YBCO 薄膜的超导电性能进行 了测试分析。薄膜的厚度通过 Ambios-XP-2 台阶仪来 测量。X 射线衍射(Philips X'Pert MRD)用来对薄膜 进行结构和物相分析。织构情况通过 X 射线 φ 扫描 和 ω 扫描进行表征,所用光源为 CuKαl,波长为 0.154 06 nm。ECO 缓冲层和 YBCO 超导层薄膜的表面微观 形貌用环境扫描电镜(ESEM)来表征。原子力显微镜 (AFM, Seiko Instrument Inc.)用来刻画 ECO 缓冲层的 结晶质量和表面粗糙度。YBCO 薄膜的超导转变利用 传统四引线法在 Quantum-Design 的 PPMS-9T 中测 得。而 *M-H* 曲线通过超导量子干涉仪 Quantum-Design 的 SQUID XL (7T)得到。77 K 自场下的临界 电流密度利用 Bean 临界态模型公式和 *M-H* 曲线进 行推算。

2 结果与讨论

图1示出了在双轴织构的NiW 金属带上沉积的 ECO单一缓冲层的XRD 衍射图谱。除了52.05°的NiW (200)衍射峰外只出现了ECO (200)峰,说明样品具有 较强的c轴取向。

NiW 基带和 ECO 单一缓冲层的 X 射线 φ 扫描和 ω 扫描图如图 2 所示。对 NiW 基带(111)方向进行 φ 扫描, (200)方向进行 ω 扫描, 半高宽(FWHM)分别为 6.0°和 6.0°,说明基带面内面外织构良好。ECO(111) 方向 φ 扫描半高宽为 5.5°,薄膜在 *a-b* 面内的取向一 致,且较 NiW(111)方向的半高宽窄,而(200)方向 ω 扫描的半高宽为 6.2°,表明 ECO 晶粒沿 *c* 轴取向性 良好。

用台阶仪测量ECO单一膜的厚度大于160 nm。另 外,除了表现出优良的双轴织构,ECO缓冲层还表现 出致密、均一、无洞无裂纹的表面微观结构,这对外 延生长YBCO层是十分重要的。图3a给出了ECO缓冲 层的微观形貌。可以清晰地看到Ni合金基带的晶界处 的槽。图3b是ECO缓冲层的AFM图。2 µm×2 µm面积 内的样品表面均方根(RMS)粗糙度约为5 nm,平均晶 粒大小在100和200 nm之间。

为了保证ECO单一膜的质量,采用新的MOD方法 外延生长YBCO超导层,如图4a所示为YBCO薄

Fig.2 Texture properties obtained for ECO/NiW: (a) NiW (111) φ -scan, (b) NiW (200) ω -scan, (c) ECO (111) φ -scan, and (d) ECO (200) ω -scan, FWHM values being shown inside the patterns

膜的 XRD 图谱。图中只能看见 YBCO 的(001)指数衍 射峰,显示 YBCO 为高度 c 轴取向结晶。图 4b 为 YBCO 薄膜的表面微观结构。可以看出薄膜表面致密、平整、 无裂纹。

图 5 为 ECO 上沉积 YBCO 薄膜的 R~T 曲线。从

图 5 可以看出,超导零电阻转变发生在 86 K 附近,77 K 自场下的临界电流密度约为 0.4 MA/cm²。超导转变 宽度较窄、临界电流密度较高,表明 YBCO 薄膜的质 量良好,也说明 Eu 掺杂的 CeO₂ 可以作为 YBCO 涂 层导体的单一缓冲层。

- 图 3 沉积在 NiW 基带上的 ECO 单一缓冲层的表面形貌和 ECO 单一缓冲层在 2 μm×2 μm 范围内的 AFM 图
- Fig.3 SEM micrograph of ECO single buffer layer deposited on NiW(a) and surface cut-out (2 μm×2 μm) of ECO buffer layer NiW (200) measured by AFM(b)

- 图 4 ECO 上沉积 YBCO 薄膜的 XRD 图谱和 ECO 上沉积 YBCO 薄膜的表面形貌
- Fig.4 Typical XRD pattern of YBCO/ECO/ NiW showing the good *c*-axis texture of YBCO(a) and SEM micrograph of YBCO layer deposited on ECO- buffered NiW showing good density and surface morphology(b)

图 5 ECO 上沉积 YBCO 薄膜的 R~T 曲线

Fig.5 Temperature dependence of resistivity for YBCO/ECO/NiW yielding a zero transition temperature T_{c0} =86.1 K

3 结 论

1) 采用 PACSD 方法可以在双轴织构的 NiW (200) 基带上沉积出质量较好、厚度超过 160 nm 的 Eu_{0.3}Ce_{0.7}O_{1.85-x}单一缓冲层,并在其上可以外延生长出 高质量的 YBCO 超导层。

2) Eu 的掺杂增加了 CeO₂ 的临界厚度。

3) PACSD 方法是一种经济实用的制备涂层导体 单一缓冲层的方法。

参考文献 References

- [1] Obradors X, Puig T, Pomar A et al. Supercond Sci Technol[J], 2006, 19: s13
- [2] Watanabe T, Iwai H, Muroga T et al. Physica C[J], 2004, 412~414: 819
- [3] Malozemoff A P, Annavarapu S, Fritzemeier L et al. Supercond Sci Technol[J], 2000, 13: 473
- [4] Zhou Y X, Bhuiyan S, Scruggs S et al. Supercond Sci Technol[J], 2003, 16: 901
- [5] Sathyamurthy S, Salama K. Supercond Sci Technol[J], 2000, 13: L1
- [6] Sathyamurthy S, Paranthaman M, Zhai H Y. J Mater Res[J], 2002, 17: 2181
- [7] Engel S, Knoth K, Huhne R et al. Supercond Sci Technol[J], 2005, 18: 1385
- [8] Bhuiyan M S, Paranthaman M, Sathyamurthy S et al. Supercond Sci Technol[J], 2003, 16: 1305
- [9] Morlens S, Ortega L, Rousseau B et al. Materials Science and Engineering B[J], 2003,104: 185
- [10] Akin Y, Aslanoglu Z, Celik E et al. IEEE Trans Appl Supercond[J], 2003, 13: 2673

- [11] Okuyucu H, Arda L, Heida Z K et al. IEEE Trans Appl Supercond[J], 2003, 13: 2677
- [12] Okuyucu H, Arda L, Akin Y et al. IEEE Trans Appl Supercond[J], 2003, 13: 2680
- [13] Li Guo(李 果), Pu Minghua(蒲明华), Du Xiaohua(杜晓华) et al. Physica C(物理)[J], 2007, 452: 43
- [14] Pu Minghua(蒲明华), Li Guo(李 果), Du Xiaohua(杜晓华) et al. Materials Science Forum(材料科学论坛)[J], 2007, 546~549: 1881
- [15] Paranthaman M, Goyal A, List F A *et al. Physica C*[J], 1997, 275: 266
- [16] Bhuiyan M S, Paranthaman M, Sathyamurthy S et al.

Supercond Sci Technol[J], 2003, 16: 1305

- [17] Xiong J, Chen Y, Qiu Y et al. Supercond Sci Technol[J], 2006, 19: 1068
- [18] Brauer G, Gradinger H. Z Anorg Allg Chem[J], 1954, 276: 209
- [19] Zeng J M, Ignatiev A, Zhou Y X et al. Supercond Sci Technol[J], 2006, 19: 772
- [20] Jia Q X, Mccleskey T M, Burrell A K et al. Nature Materials[J], 2004, 3: 529
- [21] Jain M, Shukla P, Li Y et al. Adv Mater[J], 2006, 18: 2695
- [22] Lin Y, Lee J S, Wang H et al. Appl Phys Lett[J], 2004, 85: 5007

Preparation of Eu_{0.3}Ce_{0.7}O_{1.85-x} Single Buffer Layer on Coated Conductors by Chemical Solution Deposition

Sun Ruiping, Li Guo, Pu Minghua, Wang Wentao, Zhang Xin, Wu Wei, Yang Ye, Zhao Yong

(Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu 610031, China)

Abstract: A novel polymer-assisted chemical solution deposition (PACSD) has been proposed to deposit an over-160nm-thick $Eu_{0.3}Ce_{0.7}O_{1.85-x}$ (ECO) single buffer layer on biaxially textured NiW (200) substrate. As-grown ECO buffer layer displayed excellent bi-axial texture as well as smooth, crack-free microstructure. It is observed that Eu-doping can augment the critical thickness of CeO₂ as single buffer layer. YBCO deposited on ECO buffered NiW yielded a zero transition temperature at T_{c0} = 86 K and a critical current of J_c (0 T, 77 K) = 0.4 MA/cm². These results offer a simple and cost-effective approach for the preparation of single buffer layer on coated conductors.

Key words: Eu-doping, CeO₂ single buffer layer, polymer-assisted chemical solution deposition (PACSD)

Biography: Sun Ruiping, Candidate for Master, Superconductivity R&D Center, Southwest Jiaotong University, Chengdu 610031, P. R. China, Tel: 0086-28-87600786