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Abstract: An artificial neural network model with high accuracy and good generation ability was developed to predict and optimize

the mechanical properties of Al-7Si alloys. The results show that Al-7Si alloys with tensile strength of 310~350 MPa, elongation of

3%~12%, and different microstructures are obtained by controlling the holding pressure (85~300 kPa) and cooling rate (1~10 k/s) of

the casting process. The quantitative correlation relationships of the mechanical properties with microstructures of the secondary

dendrite arm spacing (18.56~33.04 μm), area of eutectic Si phase (6.37~13.37 μm2), area fraction of porosity defects (0%~0.363%),

and area fraction of maximum Fe-rich intermetallics (0%~0.06%) in the alloy were established. The individual and combined

influences of these microstructure characteristics on the mechanical properties were simulated. Both tensile strength and elongation

are inversely related to the above-mentioned structural characteristics, and the presence of defects and Fe-rich intermetallics have

great adverse effects on the properties of the alloy. Therefore, narrowing the dendrite spacing (<20 μm), modifying the eutectic Si

phase (<12 μm2), and controlling the porosity defects (<0.35%) and the morphology of the Fe-rich intermetallics are keys to prepare

high-performance aluminum alloys.
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Al-7Si aluminum alloy has been widely used in the
automotive field due to its excellent formability, high
corrosion resistance and good comprehensive mechanical
properties[1]. It is widely accepted that the mechanical
properties of Al-7Si cast alloy are controlled by the physical
metallurgy, such as the chemical composition, morphology
and size of α -Al primary phase, silicon particles, and defects
(porosities and Fe-rich intermetallics) [2-4]. During the actual
production process, due to the problems of raw materials and
casting processes, the alloy has porosity defects and many
harmful iron phases, which is urgent to be resolved[5,6]. In
order to achieve the goal of lightweight in the automotive
field, it is of great significance to reduce automobile mass
with the improvement of alloy performance. Many efforts
have been made to explore the relationship between
mechanical properties and microstructures of aluminum

alloys[7-11]. However, all these experimental investigations
reported the relationship of mechanical properties with
microstructures independently and qualitatively. In addition, it
is very difficult to design experiments to study their synthetic
functions on mechanical properties.

Artificial neural network (ANN) is a data-driven computing
method using computer technology to simulate the working
mode of the human brain[12]. It has achieved significant results
in the fields of speech recognition, autonomous driving, and
artificial intelligence[13,14]. In recent years, the artificial neural
networks to establish nonlinear relationship models in the
field of materials science has been successfully applied.
Haghdadi et al[15] applied ANNs for prediction of the high
temperature rheological behavior of A356 aluminum alloy.
The compression deformation behavior of Al-Cu-Mg-Ag alloy
was also predicted and the ANN model was more accurate
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than the constitutive model[16]. Canakci et al[17] established an
ANN model with average absolute percentage error of about
2% to predict the effect of size and fraction of strengthened
particles on the mechanical properties of the composite. Lin et
al[18] combined experiments and back-propagation (BP) ANN
to study the effect of heat treatment system on the tensile
properties of 2A97 Al-Li alloy. Liu[19] and Wu[20] et al estab-
lished the predictive model about the relationship between
mechanical properties with heat treatment techniques for Al-
Zn and Al-Si alloys, respectively. Emadi et al[21] compared
ANN and linear regression models and obtained a model with
less standard error and higher prediction accuracy. All these
researches suggest that ANN models can study the relation-
ship between complex influences and interactions qualita-
tively in the material research field. Therefore, this research
used ANN technique to investigate the quantitative expression
and the complicated nonlinear relationship between
mechanical properties and microstructure of the Al-7Si cast
alloy.

In this study, Al-7Si alloys with different mechanical pro-
perties and microstructures were prepared through modifying
material processing techniques. The main purpose of this
study is to use ANN to establish the relationship model
between room temperature mechanical properties and micro-
structure characteristics, providing a new method for desi-
gning the alloy with targeted mechanical properties. Thus, an
accurate ANN model was constructed and the quantitative
relationships between the microstructures and mechanical
properties of Al-7Si alloys were established.

11 ExperimentExperiment

The Al-7Si aluminum alloy was used as the base material
and its composition is presented in Table 1. In order to obtain
the alloys with different mechanical properties and
microstructures, the holding pressure (85~300 kPa) and
cooling rate (1~10 k/s) were controlled during the low
pressure die casting process. The tensile specimens were
machined with the gage length of 30 mm and cross section
diameter of 6 mm, as presented in Fig. 1. Tensile tests were
conducted according to the ASTM B557 standard using an
Instron 8801 universal electromechanical testing system and
the ramp rate of extension was 1 mm/min. The number of
tensile specimens was 51 and corresponding mechanical
properties were obtained. Optimal microscopy (OM),
scanning electron microscopy (SEM), and electron probe
microscopy analysis (EPMA) were employed to characterize
the microstructure of Al-7Si alloys. Finally, the Image-Pro
Plus software (IPP 6.0) was used to investigate the
characteristics of secondary dendrite arm spacing (SDAS),
eutectic Si particles, Fe-rich intermetallics, and porosity
defects.

22 Results and DiscussionResults and Discussion

2.1 Characterization of microstructures and mechanical

properties

The inputs and outputs for the ANN model were micro-
structure characteristics and mechanical properties, respec-
tively. Representative microstructure characteristics of Al-7Si
aluminum alloys obtained by different test machines are
shown in Fig.2. The microstructure of Al-7Si aluminum alloy
mainly consists of primary α -Al solid solution, eutectic mix-
ture of aluminum and silicon, Fe-rich intermetallics, and
porosity defects. Therefore, the characterizations of micro-
structures were investigated by measuring the SDAS, size of
eutectic Si particles, Fe-rich intermetallics, and porosity
defects. And the variation range of morphology characteristics
are shown in Table 2. The range of mechanical properties are
310~350 MPa for ultimate tensile strength (UTS) and 2.46%~
12.14% for elongation (EL). The statistical results of
mechanical properties, such as UTS, EL, and yield strength
(YS) with SDAS are presented in Fig. 3. According to the
results obtained from IPP 6.0 software, the SDAS is 18.56~
33.04 μm, the area of eutectic Si phase is 6.37~13.37 μm2, the
area fraction of porosity defects is 0%~0.363% and the area
fraction of maximum Fe-rich intermetallics is 0%~0.06%.

The index of relative importance (IRI) of microstructures on
mechanical properties of Al-7Si alloys can be calculated based
on Eq.(1) and the results are presented in Fig.4. The larger the
absolute value of IRI, the stronger the degree of relationship
between the input and output variables[22,23].

IRI = | 1
N∑j = 1

N ΔO
ΔI | (1)

where N is the number of output data; ΔO and ΔI are the
percentage changes in output and input data, respectively.

The statistic results indicate that for the UTS and EL, the
order of IRI of sensitive factors is SDAS>area fraction of
maximum Fe-rich intermetallics>Si area>area fraction of
porosity defects.
2.2 ANN modeling

A multilayer ANN with a BP learning algorithm was
employed to simulate the relationship between the mechanical
properties and microstructure characteristics in this research
using the neural network toolbox available with Matlab
software. Different microstructure characteristics (SDAS, area
fraction of maximum Fe-rich intermetallics, Si area, and area
fraction of porosity defects) were considered as different
layers in the ANN modeling. All the layers were made up with
compute units and connected by transfer functions. The details

Table 1 Composition of Al-7Si alloys (wt%)

Si

6.910

Mg

0.297

Ti

0.117

Sr

0.017

Fe

0.144

Al

Bal.

 R4±0.02 
d6±0.02 

D8±0.2 

30±0.5 

36±0.5 

80±0.5 

Fig.1 Schematic diagram of tensile specimen (unit: mm)
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of the neural network methodology and comprehensive

treatments based on ANN have been reported previously[20]. In

the current study, many neural networks with different

numbers of neurons in the hidden layer and different transfer

functions were trained to optimize the architecture. The

optimum transfer function connecting these four layers can be

expressed by Eq.(2) [24]: Fig.4 Influence of input parameters on UTS (a) and EL (b)

 a b 

d c 

100 μm 20 μm 

100 μm 10 μm 

Fig.2 Microstructure characteristics of Al-7Si alloys: (a) SDAS; (b) eutectic Si phase; (c) Fe-rich intermetallics; (d) porosity defects (insets are

corresponding statistical results)

Table 2 Related parameters of microstructure and properties

Parameter

Input

Output

SDAS/μm

Area fraction of maximum Fe-rich intermetallics/%

Si area/μm2

Area fraction of porosity defects/%

UTS/MPa

EL/%

Minimum

18.56

0.003

6.37

0

310.8

2.46

Maximum

33.04

0.055

13.37

0.363

350.8

12.14

Fig.3 Relationship between mechanical properties and SDAS

SDAS=D/n

D
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tansig(n)=
2

1 + e-2n
- 1 (2)

where n is a parameter determined by the mass matrix and
threshold obtained by the ANN model. After training, it is
found that the optimum model with 4-11-11-2 type
architecture is adequate. Table 3 presents the parameters used
in this ANN model. The ANN with the best correlations for
UTS and EL was established and the ANN model designed for
this study is presented in Fig.5.
2.3 Prediction of mechanical properties

2.3.1 Prediction of mechanical properties with single factor

The superior mechanical properties are related to the finer
microstructural features. The effect of a single factor among
microstructure characteristics on the mechanical properties is predicted in a reasonable range.

Fig. 6 and 7 show the variation of mechanical properties
with SDAS, Si area, area fraction of porosity defects, and area
fraction of maximum Fe-rich intermetallics. It can be seen
from Fig. 6 and 7 that the all four parameters have greater
influences on the mechanical properties. The UTS and EL
tend to decrease with increasing the size and fraction of these
microstructural parameters. Thus UTS and EL are negatively
correlated with these various factors, which is consistent with
the previous sensitivity analysis results. In addition, the
evolution trend of EL with microstructure characteristics is
more obvious, indicating that EL is more sensitive to these
four microstructure characteristics.
2.3.2 Prediction of mechanical properties with multi-factors

The influence of microstructure characteristics on
mechanical properties is complex and interdependent. It is of

Table 3 Related parameters of ANN model

Parameter

Number of layers

Number of neurons

Initial mass and bias

Learning algorithm

Learning rate

Activation function

Number of interactions

Acceptable mean-squared error

Number of specimens

Value

Input layer: 1, hidden layer: 2,

output layer: 1

Input neurons: 4; hidden neurons:

11, 11; output neurons: 2

Randomly between -1~1

Traingdm

0.01

tansig

654

0.001

51

Fig.5 Schematic diagram of designed ANN model

Fig.6 Predicted UTS with single factor of microstructure characteristics: (a) SDAS; (b) Si area; (c) area fraction of porosity defects; (d) area

fraction of maximum Fe-rich intermetallics
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great importance to examine the synthetic influence of these
microstructural parameters. Accordingly, the mechanical
properties were simulated as a function of synthetic effects of
microstructures and the 3D prediction results of the influence
of microstructures on UTS and EL are presented in Fig.8 and
9, respectively.

It can be seen that a proper value of SDAS and Si area
should be used to obtain the desired comprehensive
mechanical properties. The effect of SDAS and eutectic Si
phase area on UTS and EL is less obvious than that of area
fraction of maximum Fe-rich intermetallics and porosity
defects. The results indicate that controlling the impurity and
defects during the alloy melting and solidification process can
improve the alloy microstructure. In order to obtain Al-7Si
alloys with optimal mechanical properties, a reasonable range
of microstructure characteristics of the alloy was determined
by ANN model. The SDAS and the Si phase area should be
less than 20 μm and 12 μm2, respectively, which is related to
the casting process and the content of refiner and modifier.
Besides, it is necessary to strictly control the content and
morphology of Fe impurities and porosity defects in
aluminum alloys. In summary, the comprehensive mechanical
properties can be obtained for the Al-7Si alloy with the SDAS
<20 μm, the area of eutectic Si particles <12 μm2, the area
fraction of porosity defects <0.35%, and restricted morpho-
logy of Fe-rich intermetallics, when UTS and EL are more
than 350 MPa and 10%, respectively.
2.4 Quantitative relationship between mechanical proper-

ties and variables
The ANN model is a combination of a mathematical

function and associated mass among inputs, hidden units, and

outputs[25]. The quantitative relationships between mechanical

properties (UTS and EL) and microstructure characteristics

(SDAS, Si area, area fraction of maximum Fe-rich

intermetallics, and porosity defects) were established, and

Fig.7 Predicted EL with single factor of microstructure characteristics: (a) SDAS; (b) Si area; (c) area fraction of porosity defects; (d) area

fraction of maximum Fe-rich intermetallics

Fig.8 Predicted UTS with multi-factors of microstructure characte-

ristics: (a) SDAS and Si area; (b) area fraction of porosity

defects and maximum Fe-rich intermetallics
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equations of the mechanical properties with the second hidden
layer are shown in Eq.(3~8).
2.4.1 Relationship between UTS and variables

The relationship between UTS and variables can be
expressed by Eq.(3) as follows:

UTS =
2

1 + e-2(∑λi Hi + 0.14 )
- 1 (3)

where i (i=1, 2, 3…11) represents different neuron; λi is the

mass of each neuron shown in Table 4; Hi is the output of each

neuron in the second hidden layer, which can be calculated by

the quantitative relationship between the first hidden layer and

the second hidden layer, as expressed by Eq.(4):

Hi=
2

1 + e-2(ai E1 + bi E2 + ci E3 + di E4 + ei E5 + fi E6 + gi E7 + hi E8 + ii E9 + ji E10 + ki E11 + li)
- 1 (4)

where Ei is the output of each neuron in the first layer, which can
be calculated by Eq.(5); the letters ai~ki represent the mass; li

is the threshold. The related values are shown in Table 4.

Ei=
2

1 + e-2(αiM1 + βiM2 + γiM3 + δiM4 + fi)
- 1 (5)

where M1~M4 are the input parameters, fi is the threshold, and
the letters αi~δi are mass shown in Table 5.

2.4.2 Relationship between EL and varibles
The relationship between EL and variables can be expre-

ssed by Eq.(6) as follows:

EL =
2

1 + e-2(∑λi Hi + 0.55 )
- 1 (6)

The values of λi for EL simulation are shown in Table 6. Hi

for EL simulation can be calculated by the quantitative

Fig.9 Predicted EL with multi-factors of microstructure characteristics: (a) SDAS and Si area; (b) area fraction of porosity defects and maximum

Fe-rich intermetallics

Table 4 Coefficient of the second hidden layer and the first hidden parameters of quantitative equations for UTS simulation

i

ai

bi

ci

di

ei

fi

gi

hi

ii

ji

ki

li

λi

1

0.60

-0.06

-0.69

0.53

-0.57

-0.78

-0.42

0.83

0.01

-0.03

0.52

-1.72

-0.77

2

-0.57

0.51

-0.37

-0.61

-0.41

-0.76

0.45

-0.72

0.42

-0.18

-0.64

1.35

0.56

3

-0.46

0.72

0.54

0.16

-0.26

-0.95

0.11

-0.41

-0.88

0.01

0.08

1.16

0.60

4

0.35

0.70

0.62

0.27

-0.71

-0.40

0.72

0.64

0.12

-0.36

0.48

-0.70

0.04

5

0.66

-0.94

0.11

-0.70

-0.27

-0.06

0.10

0.92

-0.40

0.21

0.01

-0.35

-0.16

6

0.53

0.73

0.26

-0.27

-0.22

-0.83

0.58

-0.80

0.31

-0.20

0.54

-0.09

0.82

7

-0.41

0.85

-0.42

-0.46

0.15

-0.39

0.18

-0.01

-0.58

0.88

-0.71

-0.31

0.57

8

-0.86

0.16

0.72

0.34

-0.90

-0.17

0.08

0.28

0.75

-0.17

-0.44

-0.71

-0.66

9

-0.14

0.53

-0.69

-0.76

-0.62

-0.53

0.85

0.34

-0.18

0.06

0.49

-0.99

-0.72

10

0.85

-0.69

0.38

0.63

-0.71

0.11

-0.15

0.55

-0.59

-0.20

0.17

1.35

0.71

11

0.18

0.11

-0.82

-0.21

-0.17

-0.29

0.05

0.93

0.31

-0.42

-1.01

1.74

0.18

14
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relationship between the first hidden layer and the second hidden layer, as expressed by Eq.(7):

Hi=
2

1 + e-2(ai E1 + bi E2 + ci E3 + di E4 + ei E5 + fi E6 + gi E7 + hi E8 + ii E9 + ji E10 + ki E11 + li)
- 1 (7)

Ei for EL simulation can be calculated by Eq. (8). The
related values are shown in Table 6.

Ei=
2

1 + e-2(αiM1 + βiM2 + γiM3 + δiM4 + fi)
- 1 (8)

The values of letters αi~δi for EL simulation are shown in

Table 7.

33 ConclusionsConclusions

1) During the low casting process, the Al-7Si alloys with
different mechanical properties and microstructure

characteristics are obtained by controlling the holding
pressure and cooling rate.

2) The microstructure characteristics have direct influence

on the mechanical properties of Al-7Si alloy. The influential

sensitivity sequence of the microstructures on the mechanical
properties is established. The porosity defects and area

fraction of maximum Fe-rich intermetallics are two important

parameters in deteriorating the mechanical properties.

3) Based on the predicted results of the artificial neural

network model, the Al-7Si alloy with the secondary dendrite

arm spacing <20 μm, the area of eutectic Si particles <12 μm2,

the area fraction of porosity defects <0.35%, and controlled

morphology of Fe-rich intermetallics owns the comprehensive

mechanical properties. The ultimate tensile strength and

elongation is more than 350 MPa and 10%, respectively.

ReferencesReferences

1 Wu X Y, Yun Y, Zhang H R et al. Materials Research Express[J],

2017, 4(12): 126 501

2 Li D F, Cui C X, Wang X et al. Materials & Design[J], 2016,

90: 820

Table 5 Coefficient of the first hidden layer and the input parameters of quantitative equations for UTS simulation

i

αi

βi

γi

δi

fi

1

2.05

0.47

-0.79

0.17

-2.26

2

0.54

-0.92

1.95

-0.03

-1.87

3

-0.53

0.63

1.23

0.81

1.44

4

0.73

-0.04

1.01

-1.46

-0.90

5

-0.94

0.09

0.68

1.98

0.47

6

-0.18

0.19

-1.37

-0.02

0.00

7

-1.31

-0.99

-0.77

-0.31

-0.69

8

-1.5

1.02

-1.42

-0.21

-0.77

9

-1.13

-1.72

-0.69

-0.40

-1.15

10

1.11

-1.16

-0.73

1.33

1.87

11

-0.46

-1.08

1.24

-1.16

-2.29

Table 6 Coefficient of the second hidden layer and the first layer parameters of quantitative equations for EL simulation

i

ai

bi

ci

di

ei

fi

gi

hi

ii

ji

ki

li

λi

1

0.39

-1.11

0.72

-0.79

0.33

0.18

0.34

-0.37

-0.29

0.31

-1.76

0.22

-0.84

2

0.42

0.24

-0.19

0.87

-0.03

-0.60

-0.54

-0.79

-0.73

0.61

-1.31

-0.23

1.03

3

0.40

0.42

0.87

-0.40

0.84

0.49

0.77

0.06

0.37

0.26

-0.99

-1.52

0.47

4

-0.55

-0.55

0.67

-0.15

0.18

-0.25

0.47

-0.79

-0.81

0.71

0.57

-1.27

-0.32

5

-0.54

0.73

0.20

0.26

-1.06

0.25

-0.23

0.64

-0.22

0.87

0.28

-0.07

0.54

6

-0.49

-0.13

0.63

0.67

-0.78

-0.29

-0.28

-0.23

0.71

-0.91

-0.24

1.82

0.58

7

0.72

0.48

-0.52

0.80

0.04

0.60

0.83

-0.11

-0.22

-0.60

0.58

1.22

0.05

8

-0.15

0.16

0.58

-0.75

-0.86

0.65

0.45

0.41

0.80

0.22

-1.04

0.08

0.87

9

1.00

0.72

0.39

0.88

0.28

0.32

-0.32

0.55

0.18

0.35

1.35

0.75

-0.37

10

-1.11

0.10

-0.35

0.05

0.63

-0.40

0.26

0.22

0.61

-0.56

-1.75

-0.32

0.74

11

0.39

-1.11

0.72

-0.79

0.33

0.18

0.34

-0.37

-0.29

0.31

-1.76

-0.80

-0.47

Table 7 Coefficient of the first hidden layer and the input parameters of quantitative equations for EL simulation

i

αi

βi

γi

δi

fi

1

0.36

-0.79

1.40

-1.04

-2.26

2

1.04

1.14

1.28

0.95

-1.87

3

1.56

-0.56

-0.44

-1.24

1.44

4

0.17

1.28

-0.19

1.48

-0.90

5

0.84

0.24

1.91

0.38

0.47

6

-0.16

0.25

-1.28

-0.70

0.00

7

0.45

-0.89

1.09

1.38

-0.69

8

1.35

-1.08

0.80

-0.97

-0.77

9

0.28

0.69

1.64

0.04

-1.15

10

1.58

-0.21

-0.54

0.75

1.84

11

-1.2

0.18

-0.71

-1.07

-2.29
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基于人工神经网络的亚共晶Al-7Si合金力学性能与显微组织定量关系分析

武晓燕 1，张花蕊 2，张 虎 2，吴彦欣 1，米振莉 1，江海涛 1

(1. 北京科技大学 高效轧制国家工程研究中心，北京 100083)

(2. 北京航空航天大学 材料科学与工程学院，北京 100191)

摘 要：以亚共晶Al-7Si合金为研究对象，基于Matlab神经网络工具箱开发了铝合金性能和组织关系预测程序，获得了高精度的材料性

能与组织特征的关系预测模型。通过控制增压铸造过程中保压压力（85~300 kPa）和冷却速度（1~10 k/s）参数，获得具有不同力学性

能和组织特征的铝合金。拉伸试样力学性能测试结果表明：抗拉强度为310~350 MPa，延伸率为3%~12%。采用 IPP 6.0软件统计组织特

征参数结果表明：二次枝晶间距为18.56~33.04 μm，共晶Si相面积为6.37~13.37 μm2，缺陷面积百分数为0%~0.363%，最大Fe相面积百

分数为0%~0.06%。通过人工神经网络（ANN）预测模型，探究了单因素和双因素协同作用对合金力学性能的影响规律，建立了合金性

能优化的组织控制路径。预测结果表明，该合金强度和塑性均与4种组织特征呈负相关，且缺陷和Fe相的存在对合金性能有较大的不利

影响。因此，缩小枝晶间距（<20 μm）、变质共晶Si相（<12 μm2）、控制孔洞缺陷（<0.35%）、严格控制富Fe相的尺寸和形态，是制备

高性能铝合金的关键。

关键词：铝合金；人工神经网络；定量关系；机械性能；组织特征
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