+Advanced Search
Phase Precipitation Behavior of a New Low-Co Casting Nickel-based Superalloy
Author:
Affiliation:

1.School of Materials Science and Engineering,Nanjing Institute of Technology;2.Jiangyin Uni-Pol Co Ltd

Clc Number:

TG146.1+5

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The phase precipitation behavior of a new low-cobalt casting nickel-based superalloy was studied by thermodynamic calculation software JMatPro and differential scanning calorimetry (DSC), and compared with the microstructure and composition of the actual ingot. The results show that the as-cast microstructure of low-cobalt alloy mainly includes γ (matrix), γ′, carbides (MC, M6C) and γ+γ′ eutectic structure (volume fraction about 13.9%). Positive segregation of Ta and Hf occurrs during solidification. The DSC test shows that the initial melting point, final melting point and γ′ phase remelting temperature of the alloy are 1349.6℃, 1300.1℃ and 1272.1℃, respectively. Theoretical calculations are basically consistent with the experimental results. Thermodynamic calculation shows the increase of Al and W content can increase the precipitation amount and re-solubilization temperature of γ′ and M6C carbides, respectively. Hf and Ta elements may increase the liquid-precipitation tendency of MC carbides. The expected stress rupture property of the new low-cobalt alloys is better than that of existing commercial nickel-based polycrystalline casting superalloys.

    Reference
    [1]Wang X G. Rare Metal Materials and Engineering [J], 2017, 46(3): 646-650.
    [2]Su Xiangli(苏香林), Sun Changbo(孙长波), Xu Qingyan(许庆彦) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2017, 46(12): 3699-3714.
    [3]Zhou X F, Chen G Y, Chen J L et al. Rare Metals[J], 2017, 36(008): 617-621.
    [4]Wangyao P, Polsilapa S et al. Key Engineering Materials[J], 2015, 658: 25-30.
    [5]Hyun J S, Song G W, Lee Y S. Key Engineering Materials [J], 2006, 42: 509-512.
    [6]Sun Yihao(孙毅豪). China University of Geosciences(中国地质大学)[D], 2019.
    [7]Yang D Y, Jin T, Zhao N R et al. Journal of Materials Science Technology[J], 2006(02): 169-172.
    [8]Song J Y, Sato S, Koizumi Y, Chiba A. Advanced Materials Research[J], 2014, 922: 711-715.
    [9]Yin Hongfei(尹宏飞), Dang Yingying(党莹樱), Zhao Xinbao(赵新宝), Gu Yuefeng(谷月峰). Hot Working Technology[J]. 2016, 45(18): 61-65.
    [10]Baldan R, Silva ASet al. Journal of Materials Engineering and Performance[J], 2017, 26: 465–471.
    [11]Wang Ju(王珏), Dong Jianxin(董建新), Zhang Maicang(张麦仓) et al. Journal of University of Science and Technology Beijing(北京科技大学学报)[J], 2012, 34(07): 799-807.
    [12]Wang Ling(王玲), Dong Jianxin(董建新), Tian Yuliang(田玉亮), XieXishan (谢锡善). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2006(09): 1408-1411.
    [13]Baldan R et al.SJournal of Materials Engineering and Performance [J], 2013, 22: 2574–2579.
    [14]An Ning(安宁), Yuan Xiaofei(袁晓飞), Niu Yongji(牛永吉) et al. Journal of Aeronautical Materials(航空材料学报)[J], 2018, 38(06): 19-28.
    [15]Yu Z H, Liu L, Zhang J. Transactions of Nonferrous Metals Society of China[J], 2014, 24(02): 339-345.
    [16]Zhao Zhan(赵展). University of Science and Technology Beijing(北京科技大学)[D], 2020.
    [17]Yan Xuewei(闫学伟), Tang Ning(唐宁), Liu Xiaofu(刘孝福) et al. Acta Metallurgica Sinica [J]. (金属学报), 2015, 51(10): 1288-1296.
    [18]Zhou X F, Cheng J L et al. Rare Metal Materials and Engineering [J], 2017, 46(5): 1245-1250.
    [19]Yu Q Y, Dong J X, Zhang M C et al. Rare Metal Materials and Engineering, 2010, 39(05): 857-861.
    [20]Wang L N, Zheng Q, Sun X F et al. Rare Metal Materials and Engineering[J], 2009, 38(s3): 13-16.
    [21]Sun Wen(孙文), Qin Xunzhi (秦学智), Guo Jianting(郭建亭) et al. Acta Metallurgica Sinica[J], 2016, 52(04): 455-462.
    [22]Liu Lirong(刘丽荣), Jin Tao(金涛), Sun Xiaofeng(孙晓峰) et al. Journal of Aeronautical Materials(航空材料学报)[J], 2007, 27(005): 12-16.
    [23]Shi Zhaoxia(石照夏). University of Science and Technology Beijing (北京科技大学)[D], 2013.
    [24]Shi Z X, Dong J X et al. Transactions of Nonferrous Metals Society of China[J], 2014, 24(9): 2737-2751.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[HU Liang, WANG Jue, JU Jia, WANG Zhang-Zhong, PAN Bin. Phase Precipitation Behavior of a New Low-Co Casting Nickel-based Superalloy[J]. Rare Metal Materials and Engineering,2022,51(11):4219~4226.]
DOI:10.12442/j. issn.1002-185X.20210903

Copy
Article Metrics
  • Abstract:648
  • PDF: 1127
  • HTML: 141
  • Cited by: 0
History
  • Received:October 18,2021
  • Revised:February 04,2022
  • Adopted:February 28,2022
  • Online: December 02,2022
  • Published: November 30,2022