单颗磨粒切削TC4钛合金过程摩擦行为仿真与研究
DOI:
作者:
作者单位:

1.西安航空学院机械工程学院;2.西安明德理工学院智能制造与控制技术学院;3.西北工业大学航空发动机高性能制造工业和信息化部重点实验室

作者简介:

通讯作者:

中图分类号:

TG580

基金项目:

陕西省自然科学基础研究计划资助项目(2022JQ-503, 2023JCYB-431, 2023JCYB-080);陕西省教育厅科研计划资助项目(23JK0495, 23JP124);西安航空学院博士科研启动金(2021KY0216);陕西高校青年创新团队(2022);教育部产学合作协同育人项目(220906280183841);西安明德理工学院科研基金资助项目(2022XY02L04);航空科学基金(2020Z045053001)作者简介通信作者赵盼(1986-),男,西安明德理工学院教授,主要从事复杂结构零件成型技术研究,e-mail: pan.zhao@nwpu.edu.cn


Simulation and research on friction behavior in single abrasive grain cutting of TC4 titanium alloy
Author:
Affiliation:

1.School of Mechanical Engineering,Xi'2.'3.an Aeronautical University,Xi'4.an;5.School of Intelligent Manufacturing and Control Technology,Xi'6.an Mingde Institute of Technology,Xi'7.Key Laboratory of Ministry of Industry and Information Technology,Northwestern Polytechnical University,Aeroengine High Performance Manufacturing,Xi'

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空发动机叶片的精密抛光加工是一个复杂的材料去除过程,尤其是考虑到叶片材料往往为钛合金类难加工材料。本研究通过有限元仿真软件分析单颗磨粒在切削TC4钛合金过程中的摩擦行为,旨在揭示其在钛合金叶片抛光中的作用。利用Abaqus软件在静态条件下建立了单颗磨粒去除材料过程的塑性变形模型,并通过迭代自适应网格重划分技术提高了仿真的准确性,获得了不同摩擦系数下单颗磨粒切削TC4钛合金表面划痕的接触应力分布和材料变形轮廓,并得到了截面轮廓最大切削深度和材料堆积率随着摩擦系数变化的曲线。分析结果表明,随着摩擦系数增加,磨粒与工件接触面的应力也随之增加,进而导致切削深度的增加;摩擦系数对磨粒切入阶段的影响较小,而在磨粒切出阶段,由于磨粒前面的材料堆积和切出路径对材料的推升,材料堆积率随之增加。因此,切入与切出阶段材料变形机制不同,并且较大的摩擦系数促进了材料在磨粒前端和两侧的堆积。在航空发动机钛合金叶片抛光过程中,需要合理控制摩擦系数,以达到更好的抛光效果。

    Abstract:

    Precision polishing of aero-engine blades is a complex material removal process, especially considering that the blade materials are often difficult-to-machine materials such as titanium alloys. This study uses finite element simulation to analyze the friction behavior of single abrasive particles during cutting TC4 titanium alloy, aiming to reveal its role in polishing titanium alloy blades. The Abaqus software was used to establish a plastic deformation model of the material removal process of a single abrasive particle under static conditions, and the accuracy of the simulation was improved through iterative adaptive meshing technology, and the single abrasive particle cutting TC4 under different friction coefficients was obtained. The contact stress distribution and material deformation profile of scratches on the titanium alloy surface were obtained, and the curves of the maximum cutting depth of the cross-sectional profile and the material accumulation rate with the friction coefficient were obtained. The analysis results show that as the friction coefficient increases, the stress on the contact surface between the abrasive grain and the workpiece also increases, which in turn leads to an increase in the cutting depth; the friction coefficient has a small impact on the abrasive grain cutting-in stage, while in the abrasive grain cutting-out stage, The material accumulation rate increases due to material accumulation in front of the abrasive particles and the material being pushed up by the cutout path. Research shows that the material deformation mechanism is different during the cutting-in and cutting-out stages, and the larger friction coefficient promotes the accumulation of material at the front end and both sides of the abrasive particles. Therefore, during the polishing process of aeroengine titanium alloy blades, it is necessary to reasonably control the friction coefficient to achieve better polishing results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-02
  • 最后修改日期:2024-02-20
  • 录用日期:2024-04-17
  • 在线发布日期:
  • 出版日期: