论位错的稳定存在

程开甲,程漱玉 (西北核技术研究所,陕西 西安 710024)

摘 要:阐述了 Thomas-Fermi-Dirac-Cheng电子理论的位错形成机制。通过对系统总能量的分析提出了位错能够存在的判据,计算给出多种单质材料位错存在的极限尺寸值。

 关键词:位错;Thomas-Fermi-Dirac-Cheng;极限尺寸

 中图法分类号:TG113.1
 文献标识码:A
 文章编号:1002-185X(2002)02-0081-03

至今没有对位错的大小与位错能够存在之间的 关系进行过实质性的研究,只有少许的实验结果指 出了粒子的尺寸会影响材料的性能。由于位错的存 在会大大地减低材料的性能,因此研究位错能够存 在的条件将对材料性能的提高是有利的。

图 1为一个刃位错的平面示意, a和 D分别是位 错的内、外半径, a为原子半径的量级, 外半径 D则 无法预测, 应该用新的动力学条件来决定 根据分析 可知, 外应力场作功将使材料中的一些原子偏离基 态达到新的亚稳态, 原子被逼离开了原位, 使系统的 能量增加; 同时原位上的原子丢失后, 形成了一个孔 洞, 使电场发生变化, 孔洞周围原子中的电子随之分 布在孔洞的边界上, 这些电子的状态的变化消耗掉 系统的能量, 使系统内能减小 在这两种作用下系统 达到新的亚稳态形成刃位错。"位错形成时总能量的 改变大于零"是决定位错外半径 D最小值的条件, 当 位错尺寸小于 D最小值时位错是不能存在的。

本文将探讨位错形成机理。

1 位错场

Sergeer等人给出了如下的应力场^[1]: $e_{rr} = -B \frac{\sin h}{r} \left[1 - \frac{a^2}{r_{\perp}^2} \right] \qquad B = \frac{b}{2^c 1 - \nu} \quad b \approx 2a$ $e_{he} = -B \frac{\sin h}{r} \left[1 + \frac{a^2}{r_{\perp}^2} \right] \qquad (1.1)$ $e_{zz} = -2\nu B \frac{\sin h}{r}$ $e_{he} = -B \frac{\cos h}{r} \left[1 - \frac{a^2}{r_{\perp}^2} \right]$

图 1 x-y平面内位错示意图

图 1中坐标轴 Z沿着内半径 a,外半径 D的位错 边界,轴 X沿 Burger矢量"b", κ h是 x - y平面中 的极坐标 _ 为剪切模量,v为泊松比,单位为厘米 克秒制,a,D之间单位长度位错的弹性能 E_L 为:

$$E_{L} = \frac{2}{4\pi (1-\nu)} \left(\ln \frac{D}{a} - \frac{D^{2} - a^{2}}{D^{2} + a^{2}} \right) \quad D^{\gg} a \quad (1.2)$$

文献 [1]给出了 a / D值的估算: X Y平面中单位 面积位错的极限密度约为 10° ,其平方根约为 10° 量 级。实验表明间隔为 D° 的位错沿晶界排列,两相邻 微晶面夹角为 θ (图 2), D° 与应力场作用下的 D不 同。表 1为 Ge晶体的 θ 和 D° 的测量结果,由表可见 表 1 相邻晶界面的 θ 和 D° ^[1]

Table 1 The θ and D^* of adjacent crystal boundary

θ /s	$D^{*}_{ m Galculting values}$ /cm	D [*] _{Experiment values} /cm		
(17.5±2.5)10-4	(4.7±07)10-4	(5. <u>3</u> ± 0. 3) 10 ⁻⁴		
(65. 0 \pm 2. 5) 10 ⁻⁴	(1. 3 0 1) 10 4	(1. <u>3</u> ± 0. 1) 10 ⁻⁴		
(85. 0 \pm 2. 5) 10 4	(0. 97 \pm 0. 2) 10 4	(0. 99 \pm 0. 2) 10 ⁻⁴		

收稿日期: 2001-11-19

作者简介:程开甲,男,中国科学院院士,西北核技术研究所,陕西 西安 710024,电话: 029-8222694

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

解理角的量级均为 10^4 , 与位错临界密度所做估算相 符。这些数据对各种不同方位的晶格都适用。

图 2 相邻两微晶间解理面示意图

Fig. 2 The inclination between two adjacent small angle c ry stals

位错稳定性判据 2

位错只能存在于相对稳定的亚稳态晶体中。外驱 动力和导致固体体积膨胀 内能消耗的固体内部费米 电子产生的压力是构成位错的根本原因、当这两种作 用相互平衡时,固体就达到了新的相对稳态。前者是 方程(1.2)描述的位错弹性能:后者则是电子压力 P 对位错孔穴所做的功,电子压力 P可根据维里定理 给出^[2]:

$$2PV = 2K + V_{ex}$$
 (2.1)

式中 K为原子边界上电子的动能, V_{ex} 为交换能, 故 压力 P可写为:

$$P = \frac{1}{3} \left(\frac{2.3h^2}{10n^*} \left(\frac{3}{8\pi} \right)^{\frac{2}{3}} n^{5/3} - e^2 \left(\frac{3}{\pi} \right)^{\frac{1}{3}} \frac{3}{4} n^{\frac{4}{3}} \right)$$
(2.2)

式中:n为原子间界面上的电子密度; m^* 为电子有效 质量:h为普朗克常数:e为电子电荷

在位错平面上形成单位长度体积为 V的位错时, 电子压力做功为:

$$E_P = -PV / d, \qquad Vn = z \qquad (2.3)$$

式中体积 V是一个位错原子被挤出后留下的空间中, 周围电子向内挤压分布所占据的壳层体积, d 为两位 错间的距离, Vn 等于该空间中的价电子数 z 位错形 成后造成的电子壳层中的电子间相互排斥,使壳层膨 胀 系统能量下降,从而抵消外加驱动力作用下系统 能量增加的影响,达到一个新的平衡状态。

由方程 (2.2)和方程 (2.3)得电子压力导致的单

$$\frac{PV}{d} = \left\{ \frac{h^2}{5m^*} \left(\frac{3}{8} \right)^{\frac{2}{3}} n^{\frac{5}{3}} - \frac{e^2}{4} \left(\frac{3}{\pi} \right)^{\frac{1}{3}} n^{\frac{4}{3}} \right\} \frac{z}{n} \left[2r \left(\frac{2}{3} \right)^{\frac{1}{2}} \right]^{-1}$$
(2.4)

式中 r为原子半径, $2r(2/3)^{1/2}$ 为紧密相叠结构的层 厚

则可由方程(1.2)和方程(2.4)得形成单位长度 位错的总膨胀能为:

$$X = (E_L - PV) / \frac{\pi b^2}{4n(1-\nu)}$$

即:

$$\mathbb{X} = \left\{ \ln \frac{D}{a} - \frac{D^2 - a^2}{D^2 + a^2} - h \left\{ \frac{h^2}{5m^*} \left(\frac{3}{8t} \right)^{\frac{2}{3}} n^{\frac{5}{3}} - \frac{e^2}{4} \left(\frac{3}{\pi} \right)^{\frac{1}{3}} n^{\frac{4}{3}} \right\}$$
(2.5)

式中 k= 4z (1-v) $\left[2 \frac{2}{3} rnb^2 \right] \circ \pi /$

由于位错存在于亚稳态,膨胀能 X必须为正,由 此求得 D /a, 即得位错极限尺寸如下:

$$D = ae^{\pi}$$

$$Z = \frac{100(1-\nu)}{\pi}zr^{*-3}n^{*-3/2}(1-0.546n^{*-1/3}) \quad (2.6)$$

$$n^{*} \equiv n\overline{10}^{-23}, r^{*} \equiv r10^{8}, b = 2r$$

$$^{*} \equiv 10^{-11}, a \approx r$$

上式清楚地说明位错极限尺寸是电子密度 n和 半径 r的函数, n和 r由 TFD模型计算给出。

表 2给出了一些元素的计算值 D和 Z及计算用 的材料参数。 η_{ν} 为元素的弹性系数, $n \eta_{r}$ 为 TFD模型计算结果。由表可见, 各元素的弹性系数和 电子密度差别很大,但 D计算值的量级相同。经分析 知这是由干作为电子密度的函数的电子能量密度与 弹性系数近似成比例,且泊松比的变化平稳

这些数据直接证明了位错的尺寸不会无限小,存 在一个满足亚稳态条件的极小值 当位错的尺寸小于 此极小值时, 位错消失, 材料变为通常的晶态, 存在 很大的内应力。这已在纳米尺度的 Al-Zn薄膜情况中 已得到了证明^[3], Al-Zn薄膜中的内应力比样品的极 限强度大得多。纳米尺度的晶体成为无缺陷样品,具 有很高的强度和韧性。

必须再强调的是: 在亚稳态的构成过程中, 存在 着微观与宏观之间的过渡。位错能够存在的尺度是有 限的,小于此极限尺度的晶体是稳定的完好晶体,纳 米尺度晶体的力学性质非常好。增加位错半径 D 需 要外部能量,因此会使晶态变得不稳定。

位长度位错的膨胀能为: 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2 位错极限尺寸

° 83°

			Table 2	The limit size of dislocation				
Elem ent	Ζ	Volence electron, z	n [*]	r [*]	*	ע	Z	2D10 ⁴
Be	4	2	1. 459	1. 245	14. 7	0.05	4. 36	0. 05
${ m M}{ m g}$	12	2	0. 559	1. 770	1.09	0.33	5. 08	0. 15
Al	13	3	1. 045	1. 580	2.50	0.36	9. 10	6.96
Ti	22	4	1. 278	1. 616	4. 40	0.32	6. 70	0. 71
Fe	26	2	2. 766	1. 415	8. 2	0.29	7.17	1. 00
Ni	28	2	3. 195	1. 382	8.00	0.34	8. 35	3. 18
Cu	29	1	0. 934	1. 413	4. 79	0.15	7. 78	1. 84
Zn	30	2	1. 860	1. 553	4. 20	0.25	6. 62	0. 63
Ge	32	4	1. 056	1. 740	3. 90	0 27	6. 67	0. 88
Ag	42	1	2. 026	1. 597	2.70	0.38	7.47	1. 53
Sn	50	4	0. 906	1. 860	1.72	0.36	9. 43	12. 54
W	74	4	2.876	1. 551	13.4	0.35	6.00	0. 34
Pt [*]	78	1	3. 173	1. 535	6.40	0.30	4. 09	0. 05
Au	79	1	2. 642	1. 593	2.86	0.42	5.66	0. 25
Pb	82	4	0. 903	1. 935	1.65	0.40	8.00	3. 14

参考文献 References

Material[J]. Progress in Natural Science, 1996, 6(1): 12

 Flugge S. Encyclopedia of Physics, Vol. VII. Part 1[M]. Berlin Springer-Verlag, 1955, Crystal Physics I [3] Li S C. Quantum Effect of the Superplastivity in Zn5Al Alloy[J]. Progress in Natural Science, 1999, 9(9): 656

[2] Cheng K Jet al. Theoretical Foundation of Condensed

On the Stability of Dislocation

Cheng Kaijia, Cheng Shuyu

(Northwest Institute of Nuclear Technology, Xi an 710024, China)

Abstract Mechanism underlying the formation of dislocation is expounded on Thomas-Fermi-Dirac-Cheng (TFDC) electron theory. The criterion condition on the limit size of dislocation is raised, and the calculated results of the limit sizes of a set of elements are given.

Key words dislocation; Thomas-Fermi-Dirac-Cheng; limit size

Biography Cheng Kaijia, Academician, Northwest Institute of Nuclear Technology, Xi án 710024, P. R. China, Tel 0086-29-8222694